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Functional correctness: 
C code only behaves 

as specified

Model enforces 
isolation properties

Translation validation:
Binary retains

C-code semantics Limitations (work in progress):
• Kernel initialisation not yet verified
• MMU & caches modelled abstractly
• Timing channels not ruled outSound worst-case 

execution time bound

seL4: Base for Trustworthy Systems

FMaS | Menlo Park | Oct'192 |

Integrity



Real-World Use:
Incremental
Cyber
Retrofit



DARPA HACMS
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Autonomous trucks

GVR-BotOff-the-shelf
Drone airframe



ULB Architecture
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Incremental Cyber Retrofit
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Original 
Mission

Computer

ULB Incremental Cyber Retrofit
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Incremental Cyber Retrofit
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Security by 
Architecture



Core Security Mechanism: Capability

FMaS | Menlo Park | Oct'1910 |

Any system call is invoking a capability:
err = method( cap, args );

Obj reference

Access rights

Capability = Access Token:
Prima-facie evidence of privilege

Eg. read, 
write, send, 
execute…

Capabilities provide:
• Fine-grained access 

control
• Reasoning about 

information flow

Eg. thread, 
address 
spaceObject



Controlled Communication via Caps
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Issue: Capabilities are Low-Level
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Simple But Non-Trivial System

FMaS | Menlo Park | Oct'1913 |



Component Middleware: CAmkES
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Higher-level abstractions of 
low-level seL4 constructs

Comp A

Comp C

Comp B

SemaphoreShared memory

RPC

Interface

Component

Connector



HACMS UAV Architecture
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Enforcing the Architecture 
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Architecture Analysis
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High Assurance
Beyond the 
Kernel



Microkernel ≪ TCB

Operating system

Hardware
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OS structured in isolated components, minimal 
inter-component dependencies, least privilege
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Microkernel ≪ TCB
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Verification Cost
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Life-Cycle Cost in Context
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Beyond the Kernel
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Cogent: Code & Proof Co-Generation

FMaS | Menlo Park | Oct'1924 |

• Restricted, purely functional 
systems language

• Type- and memory safe, not 
managed

• Turing incomplete
• File system case-studies: 

BilbyFs, ext2, F2FS, VFAT

[O’Connor et al, ICFP’16; 
Amani et al, ASPLOS’16]
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Auto-
matic

Manual,
one-off

Manual,
equational

Aim: Reduce cost of 
verified systems code

⚭



Dependable And Affordable?
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Fully 
automated

Work in progress:
• Language expressiveness
• Reduce boiler-plate code
• Use for network stacks 
• Use for device drivers

Dependability-cost tradeoff:
• Reduced faults through safe language
• Property-based testing (QuickCheck)
• Model checking
• Full functional correctness proof

???

Abstract 
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Spec
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CakeML: Syntesising Code & Proofs
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• Impure, general-purpose 
functional language

• Type-safe, managed, garbage-
collected, not memory-safe, 
Turing complete

• Verified run-time (GC etc)
• Compiles to binary for Armv6/8, 

x86, MIPS62, RISC-V
• Competitive performance

[Tan et al., ICFP’16]

Function Spec
HOL

Machine Code

CakeML

Aim: Reduce cost of 
verified applications code

CAmkES glue-
code verification 
in progress
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Time Protection: 
Systematic 
Prevention of 
Timing Channels



Threats

FMaS | Menlo Park | Oct'1928 |

Speculation

Microarchitectural 
Timing Channel

An “unknown 
unknown” until 

recently

A “known 
unknown” 

for decades



Cause of Timing Channels: 
Competition for HW Resources
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High Low

Affect execution speed

Shared hardware • Inter-process interference
• Competing access to micro-

architectural features 
• Hidden by the HW-SW contract!



Sharing: Stateful Hardware
HW is capacity-limited
• Interference during
• concurrent access
• time-shared access

• Collisions reveal addresses
• Usable as side channel

Cache

High Low

Any state-holding microarchitectural feature:
• cache, branch predictor, pre-fetcher states
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Timing-channel prevention: 
Partition hardware:
•spatially
• temporally (time shared)



Time Protection: Partition Hardware
High Low

Cache Flush

Temporally 
partition

Cannot spatially partition on-
core caches (L1, TLB, branch 
predictor, pre-fetchers)
• virtually-indexed
• OS cannot control

Cache

High Low

High Low

Cache

Spatially partition

Flushing useless for 
concurrent access
• HW threads
• cores

Need
both!
Need
both!
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Spatially Partition: Cache Colouring
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Cache

RAM

• Partitions get frames of disjoint colours
• seL4: userland supplies kernel memory
⇒ colouring userland colours dynamic 
kernel memory

• Per-partition kernel image to colour kernel
[Ge et al. EuroSys’19]

High Low

TCB PT PTTCB



Temporal Partitioning: Flush on Switch
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1. T0 = current_time()
2. Switch user context
3. Flush on-core state
4. Touch all shared data needed for return
5. while (T0+WCET < current_time()) ;
6. Reprogram timer
7. return

Latency depends
on prior execution!

Time padding 
to Remove

dependency

Ensure 
deterministic 

execution

Must remove any 
history dependence!

33 |



Challenge: Broken Hardware
• Systematic study of COTS hardware (Intel and Arm) [Ge et al, APSys’18]:

• contemporary processors hold state that cannot be reset
• need a new hardware-software contract to enable real security

Small 
channel!

RISC-V will 
provide suitable 

contract

Security Standing 
Committee agrees Also residual state 

in pre-fetchers



Can We Verify 
Time 
Protection?



Competition for HW Causes Channels
High Low

Affect execution speed

Shared hardware

• Prove absence of interference, 
⇒ no channels possible 

• Must prove correct partitioning!
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Can Time Protection Be Verified?
1. Correct treatment of spatially partitioned state:
- Need hardware model that identifies all such state (augmented ISA)
- Enables functional correctness argument: 

No two domains can access the same physical state

2. Correct flushing of time-shared state
- Not trivial: eg proving all cleanup code/data are forced into cache after flush

• Needs an actual cache model
- Even trickier: need to prove padding is correct

• … without explicitly reasoning about time!

Transforms timing 
channels into 

storage channels!



How Can We Prove Time Padding?
• Idea: Minimal formalisation of hardware clocks (logical time)
- Monotonically-increasing counter
- Can add constants to time values
- Can compare time values

To prove: padding loop terminates 
as soon as timer value ≥ T0+WCET

Functional 
property



https://trustworthy.systems

THANK YOU

Gernot Heiser | gernot@unsw.edu.au | @GernotHeiser
FM@Scale, 9 Oct 2019



FMaS | Menlo Park | Oct'1940 |



New HW/SW Contract: aISA

For all shared microarchitectural resources:
1. Resource must be spatially partitionable or flushable
2. Concurrently shared resources must be spatially partitioned
3. Resource accessed solely by virtual address must be flushed and not 

concurrently accessed
• Implies cannot share HW threads across security domains!

4. Mechanisms must be sufficiently specified for OS to partition or reset
5. Mechanisms must be constant time, or of specified, bounded latency
6. Desirable: OS should know if resettable state is derived from data, instructions, 

data addresses or instruction addresses
7. Desirable: Flush only affects state that must be flushed

Augmented ISA supporting time protection
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Security Standing 
Committee agrees



Verification rules out unspecified behaviour:
• Buffer/stack overflow
• Null-pointer dereference
• Code injection
• Use after free
• Memory leaks
• Kernel crash
• Privilege escalation
• Covert storage channels, …

… as long as the assumptions are satisfied!

Abstract
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Proof
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Verification Guarantees
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Verification forces you to 
make assumptions explicit! 

Reason many bugs 
are found just from 
writing the spec!



Verification Assumptions
1. Hardware behaves as expected

• Formalised hardware-software contract (ISA)
• Hardware implementation free of bugs, Trojans, …

2. Spec matches expectations
• Can only prove “security” if specify what “security” means
• Spec may not be what we think it is

3. Proof checker is correct
• Isabel/HOL checking core that validates proofs against logic
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With binary verification do not
need to trust C compiler!
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Present Verification Limitations
• Not verified boot code
- Assume it leaves kernel in safe state
- Verification in progress

• Caches/MMU presently modeled at high level / axiomised
- This is in progress of being fixed, MMU model done

• Not proved any temporal properties
- Presently not proved scheduler observes priorities,

properties needed for RT
- Worst-case execution-time analysis applies only to dated ARM11/A8 cores
- No proofs about timing channels yet
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Translation Validation
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C source

Binary 
code

Formalised
C

Formalised
binary

Functional
code

Functional
code

Formal
ISA spec

SAT
solver etc

Formal
C semantics Rewrite

rules

De-
compiler

Symbol
tables etc

Target of functional 
correctness proof



What is seL4?



L4: 25 Years High-Performance Microkernels
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L3→L4 “X” Hazelnut Pistachio

L4/Alpha

L4/MIPS

OKL4-µKernel

OKL4-Microvisor

Codezero

P4 → PikeOS

Fiasco Fiasco.OC

L4-embed.

Nova

GMD/IBM/Karlsruhe
UNSW/NICTA/Data61
Dresden
Other (commercial)

OK Labs

API Inheritance

Code Inheritance

93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12

seL4: The latest member of the L4 microkernel family

Qualcomm 
modem chips

iOS secure 
enclave



Difference To Other OS Kernels
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Global Resource Manager

RAM
I+D

GRM
I+D

Resource Manager
RM
I+D

Resource Manager
RM
I+D

Addr
Space

AS

Addr
Space

Addr
Space

RM
RM
I+D

Resources fully 
delegated, allows 

autonomous 
operation

Strong isolation,
No shared kernel 

resources

Design for isolation: 
no memory 
allocation by kernel



Isolation Goes Deep
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TCBs Caps

PTs

TCBs Caps

PTs

Kernel data 
partitioned 

like user data

HighLow



Verifying Isolation: Integrity
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TCBs Caps
PTs

TCBs
CapsPTs

HighLow

To prove: LOW doesn’t have write capabilities to HIGH’s objects
⇒ no action of LOW will modify HIGH state

• Specifically, kernel does not modify HIGH on LOW’s behalf!
- Event-based kernel operates on behalf of well-defined user thread
- Prove: kernel only allows write upon capability presentation



Verifying Isolation: Availability
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TCBs Caps
PTs

TCBs
CapsPTs

HighLow

To prove: HIGH can access promised resources when it wants to
⇒ no action of LOW will lead to HIGH resources being denied

• Strict separation of kernel resources, LOW cannot  interfere with HIGH resources
• Nothing to do: implied by other properties



Verifying Isolation: Confidentiality
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TCBs Caps
PTs

TCBs
CapsPTs

HighLow

To prove: LOW doesn’t have read capabilities to HIGH’s objects
⇒ no action will reveal HIGH state to LOW

Non-interference proof :
• Evolution of LOW does not depend on HIGH state
• Also shows absence of covert storage channels

Violation not 
observable 

by High!



Verification Matrix
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Feature Core
spec to C

C to 
binary

Security
enforcem.

Mixed-
criticality

Virtual
machines

Multi-
core

Arm 32 done done done Q4’19 done in progr.
Arm 64 unfunded in progr. unfunded unfunded unfunded ???
x64 done no plans no plans easy? no plans ???
RISC-V 64 Q4’19 Q3’19 unfunded Q4’19 unfunded ???

• Security: CIA enforcement proofs
• Mixed criticality: advanced real-time support with temporal isolation;

This will replace the mainline kernel once verified
• Virtual machines: verified use of hardware virtualisation support



L4 IPC Performance over 20 Years
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Name Year Processor MHz Cycles µs
Original 1993 i486 50 250 5.00
Original 1997 Pentium 160 121 0.75
L4/MIPS 1997 R4700 100 86 0.86
L4/Alpha 1997 21064 433 45 0.10
Hazelnut 2002 Pentium 4 1,400 2,000 1.38
Pistachio 2005 Itanium 1,500 36 0.02
OKL4 2007 XScale 255 400 151 0.64
NOVA 2010 i7 Bloomfield (32-bit) 2,660 288 0.11
seL4 2017 i7 Skylake (32-bit) 3,400 203 0.06
seL4 2017 I7 Skylake (64-bit) 3,400 138 0.04
seL4 2017 Cortex A53 1,200 225 0.19



Military-Grade Security
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Cross-Domain Desktop Compositor
Multi-level secure terminal
• Successful defence trial in AU
• Evaluated in US, UK, CA
• Formal security evaluation soon

Pen10.com.au crypto 
communication device in 
use in AU, UK defence



BilbyFS
functions
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seL4 12 py 180,000 8,700 C 350 20

Manual Proof Effort
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Effort Isabelle
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isync()/
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9.25  pm 13,000 1,350 150

sync()-
specific

3.75 pm 5,700 300 260

iget()-
specific

1 pm 1,800 200 100

BilbyFS: 4,200 LoC Cogent



Security: A 
HW-SW 
Codesign Issue
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Remember: Security Enforcement
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Operating System

Hardware (CPU etc)

High Low

Provide mechanisms

Enforce policies

HW-SW Contract

Security enforcement must be 
mandatory, i.e. not dependent 
on application/user cooperation!



Hardware Cannot Do Security Alone!
• Security policies are high-level

• Course-grain: “applications” are sets of cooperating processes

• Hardware mechanisms are fine-grain: instructions, pages, address spaces
• Much semantics lost in mapping to hardware level

• Security policies are complex: “Can A talk to B?” is too simple
• maybe one-way communication is allowed
• maybe communication is allowed under certain conditions
• maybe low-bandwidth leakage doesn’t matter
• maybe secrets only matter for a short time
• maybe only subset of {confidentiality, integrity, availability} is important



Why the ISA is an Insufficient Contract
• The ISA is a purely operational contract

• Sufficient for ensuring functional correctness
• Insufficient for ensuring confidentiality or availability

High Low

Observe execution speed:
Confidentiality violation

Affect execution speed:
Availability violation

The ISA intentionally 
abstracts time away


