

Managing cyber-physical systems in the real world

Genevieve Giuliano METRANS Transportation Center University of Southern California

NSF Cyber-Physical Systems Annual Meeting November 2017

Introduction

- □ The promise of CPS
- Necessary conditions
- The case of CPS applied to transport

The promise of CPS

Efficiency

- Better use of inputs
- Better management of demand
- Better monitoring and management of infrastructure

Necessary conditions

- Reliable information available and shared
- Means for system management
- Feasible options for efficiency improvements
- Responsiveness of decision-makers

Consider in context of transportation CPS

The transportation CPS

Infrastructure

- Highways, railroads, public transit, ports, airports, intermodal terminals, local streets and roads
- Operators and owners
 - Governments, private firms
- Users
 - Individual travelers, shippers, cargo owners
- Regulators
 - All levels of government

Complexity

- Modal "stovepipes"
 - Different operators, managers, funding sources
- Agency jurisdictions
 - Public transit agencies
 - Highway operations vs vehicle enforcement
- Technology does not assure cooperation, coordination, and lack of coordination can reduce effectiveness of technology

General issues

Public infrastructure is costly and long-lived

- Retrofitting may be costly and constrained
- Costs of transition to new technologies
 - How to phase in new technologies
 - Linkages and compatibility with existing systems
- Mismatch in timing
 - The public decision-making process vs technology change
 - Long-term investments vs high turnover technology
 - With constantly changing technology, how do you decide when to invest?

Reliable information available and shared

- Many different owners of information
 - Information is power
- Some proprietary
 - Limited willingness to share
- Questions
 - Beyond the technical fixes....
 - Under what conditions are owners willing to share?
 - How can information sharing be better incentivized?

Means for system management

- Optimization implies a system manager, but management of the transport system is fragmented among many managers
- Multiple stakeholders and multiple objectives
 - Centralized control systems are incompatible
 - Who has authority?
 - All stakeholders have veto power

Multiple stakeholders, con't

- Fragmented authority weakens decisionmaking
 - Affects technology design and implementation
 - May affect project leadership and management
 - Difficult decisions deferred
 - Lack of authority, accountability
- Benefits must exceed costs for each participant
 - Without net benefits, no incentive to participate
 - Because of veto power, participants can hold out for more, raising project costs and/or reducing project effectiveness

Questions

Are there forms of collaboration that can lead to near optimal solutions?

What motivates collaboration among managers?

Feasible options

- Technical feasibility ≠ implementation feasibility
- Options may assume shifts in behavior that are not practical from user perspective
- Options may assume technical capacity that does not exist

On technical capacity

- Technology has changed faster than the public workforce
- Those who will use the technology may not have adequate skills
- Communication problems between the tech experts and managers, decision-makers
 - Managers, decision-makers may have unrealistic expectations
 - Managers, decision-makers vulnerable to the "hard sell" of vendors, technology developers

Questions

Questions

- How do we incorporate practical considerations in complex modeling?
- Should we be thinking about phased implementation?
- Do we adequately understand the technology implementation process?

Decision maker response

- To move research to implementation, need support of decision-makers (public sector representatives and private sector users)
- Interests of agency officials, elected officials, public
 - Elected officials make funding, project decisions
 - Public agencies are responsible
- □ The high cost of failure
 - One failure may delay adoption of worthy technology for a long time
 - Makes public sector highly risk adverse, hence unwilling to experiment
 - A disincentive for specific goals, performance measurement

Questions

- What is the acceptable technology failure rate?
- How do we better understand the institutional impacts of CPS?
- Should we incorporate institutional constraints in our models?

