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Motivation and Objectives
- The current lack of toolchain for high confidence testing, validation and verification 
of advanced, connected and automated/autonomous vehicles can impede and even 
entirely prevent the introduction of such vehicles into mass production. 

- Project Objectives:  

(i) Game theory-based simulation environment to inform in-traffic relevant 
trajectories.

(ii) Model-free trajectory optimization techniques for actively falsifying time domain 
specifications.

(iii) CPS Smart Black Box with sampling-based vehicle data acquisition and 
management strategies to uncover faults in both existing and future vehicle fleets.
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Game Theory Based Traffic Simulator for V&V of 
Automated Driving Algorithms

To facilitate the testing of future vehicles, we 
develop a traffic simulator that can be used to 
evaluate the performance of various automated 
driving algorithms in different traffic scenarios.

The simulator is focusing on the modeling of 
driver-driver & driver-automation interactions by 
exploiting the hierarchical reasoning game theory.

Fig.1: The testing of a car (in red) controlled by an automated driving 
algorithm based on decision tree approach in the traffic simulator.

Level-0

Level-1

Level-2

Fig.2: The reasoning depth hierarchy

• A level-𝑘𝑘 driver predicts the 
decisions of all other drivers by 
assuming them be level-(𝑘𝑘-1), and 
makes decisions as the best 
response to their decisions based on 
the prediction.

• Different driver type (level-0,1,2,…) 
represents different driving habit and 
proficiency of a driver. 



Game Theory Based Traffic Simulator for V&V of 
Automated Driving Algorithms

Environment

Higher-level 
Controller

Lower-level 
Controller

Vehicle Dynamics

Accel, decel, 
change lane, …

ObservationVehicle

Engine torque, 
gear, steering, …

Fig.3: The control structure of a car
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Fig.4: The observation space of a car

• The underlying dynamics of the traffic 
is assumed to be Markov, while each 
driver is assumed to only be able to 
observe the information from his/her 
vicinity, i.e., the system states are only 
partially observable to each agent.

Environment
Learning agent

Level-𝟎𝟎 policy

Level-(𝒌𝒌-1) policy

Level-𝒌𝒌 policy

Reinforcement 
Learning

• Reinforcement learning is used to 
solve for the control policies of 
level-𝑘𝑘 (0,1,2,…) sequentially.

• By assigning policies of different 
levels to the drivers, we can model 
traffic consisting of different human 
drivers.

Fig.5: Algorithm to solve for the level-𝑘𝑘 policies



Presentation Focus:  

The Smart Black Box
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The Aircraft Black Box - History
The Black Box was proposed by the Civil Aeronautics Board (CAB) in the late 1940’s and was adopted by the 
late 1950’s.
◦ Original flight data:  Engine power (RPM), angle of attack, pitch, roll, yaw, longitudinal trim, elevator position, aileron 

position, rudder position, air temperature, wing flap position.
◦ Secondary data:  Thrust reverser, fuel flow, power lever, cabin pressure, master fire warning, autopilot state, hydraulic 

pressure, CG, speed brake, engine vibration, gross weight, smoke detection, yaw damper, electrical power, engine fire 
warning

◦ Used for maintenance and accident investigations; anomalies could also be documented
◦ Flight data recorder (FDR) “tapes” originally saved about 60 hours of data as a circular buffer
◦ Cockpit voice recorders (CVRs) also adopted with a similar circular buffer format

Primary Sources:
◦ B. Allen and J. Leak. "The potential role of flight recorders in aircraft accident investigation", Aviation Safety Meeting, 

Meeting Paper Archive, AIAA, 1966 http://dx.doi.org/10.2514/6.1966-810
◦ R. D. Morris. "Parameter selection for in-flight recording", Journal of Aircraft, Vol. 1, No. 5 (1964), pp. 300-303. 

http://dx.doi.org/10.2514/3.43597
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Data Caching in the 21st Century
Broad suite of data now stored in cars, ships, & planes.
◦ Comprehensive low-bandwidth data stored to support diagnostics, e.g., CAN bus data on a car.
◦ Experimental vehicles equipped with high-bandwidth video, LIDAR, radar also captured in raw form over short 

durations (!).
◦ Data typically stored onboard then downloaded after a drive concludes.  
◦ Low-bandwidth maintenance and geo-location messages transmitted to a company server (e.g., ACARS for aircraft, 

fleet vehicle GPS for commercial trucks).

Remaining Challenges.
◦ High-bandwidth raw data cannot be stored onboard long-term – just too much data (1 Tbyte per second!)
◦ Storing only “output” (e.g., objects) cannot reveal errors in data processing (e.g., false positives, missed detections)
◦ Exploit the V2C2V link to capitalize on “infinite storage capacity cloud,” though data uplink/storage still has cost
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CAN Messages:
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Object data:
data describes the position and size of objects
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1000 ms
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Raw Lidar frames

Raw camera frames

Object 
detection

Mobileye 
data

CAN Bus 
data

Object 
detection

Object data

Object data

Data reader, pre-processor

Smart Black Box – Data Acquisition and Pre-processing

e.g. ID0, engine & braking

e.g. ID1, electronics

e.g. ID2, navigation & control

e.g. ID0, engine & braking

e.g. ID1, electronics

e.g. ID2, navigation & control

Merge into same 
time stamp

Merge into same 
time stamp

Smart 
Black Box 

Part I: 
Analyzer

Raw LIDAR 
data

Raw image
data

Smart Black Box: 
Raw Data

Compression
(Mozafari et al)
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Part I: Analyzer

1st data structure
4ms

10ms

500ms
500ms

Part II: Optimizer

…
…

Data value
and cost 
analyzer

Low + high bandwidth 
data stream

Value/Cost of  
the data stored in 
the buffer

Buffer addition, uplink, 
delete commands

Value/Cost of  
incoming data 
buffer
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Cloud
(e.g. AVL...)Upload Data Priorities,

Real-time Bandwidth, Cost

Smart Black Box – Data analyzer and optimizer

Raw Lidar,
Camera Frames 
frames
Compression

Optimizer:
Compute the optimal 
data to store, upload, 

and delete

Data
Buffer

Upload

Compressed 
raw data

Merged 
data

Compression 
level metric



Compare
Objects

Compute 
variances

Collision 
probability

Camera 
Object 
Data

CAN 
data

Addl data:  INS, 
ultrasonic, 

interior camera(s)

Mobileye 
data

Anomalies?

Compute values 
& costs

Camera/LIDAR object 
types, quality, novelty

Data quality, 
novelty

Vector of values, V
Vector of costs, C

e.g. V = [RawCam; RawLid; ObjCam; Objmob; ObjLid; CAN1 ...]
= [722;        883;     128;     64;       32;      255;  ...]

C = [RawCam; RawLid; ObjCam; Objmob; ObjLid; CAN1 ...]
= [  1500;      1412;       96;    155;    128;        42;  ...]

Smart Black Box – Data value/cost analyzer 

Compute values 
& costs

* Factors considered
◦ Data agreement
◦ Upper and lower bound
◦ Probability
◦ Boolean flag status
◦ Variance of  same kind of  

data from different sensors
◦ …

* Simulations  generate 
sample (CAN, object) datasets

* Experiments / large data 
set access  critical for 
realistic analysis
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◦ Suppose value vector 𝑉𝑉 and cost vector 𝐶𝐶 have been defined. 

◦ Optimizer (Part II) objective:  merge data to maximize overall value and minimize cost:

◦ Per byte of  data stored onboard each vehicle 

◦ Per byte of  data uplinked to the cloud

◦ Asynchronous data management:

◦ Stage 1:  Cache data streams from each sensor in a [circular] buffer

◦ Stage 2:  Migrate data of  sufficient value to non-volatile memory onboard or immediately uplink; 
overwrite remaining data

◦ Stage 3:  Uplink data cached onboard and clear from memory

◦ Garbage collection:  Delete lowest-value “aging” data from onboard memory to free space as needed

Smart Black Box Part II – Data Storage Optimizer
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Mode description
◦ With little to no connection to the cloud, incoming data must be stored locally.  Data must be discarded as needed to 

prevent memory/disk overflow.

Formulation
◦ 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑘𝑘 = NULL; no data can be uploaded

◦ State: 𝑋𝑋(𝑡𝑡𝑘𝑘) = 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡𝑘𝑘 ,𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡𝑘𝑘 ,𝑀𝑀 𝑡𝑡𝑘𝑘

◦ Action: 𝑈𝑈(𝑡𝑡𝑘𝑘) = 𝑟𝑟𝑖𝑖𝑖𝑖 𝑡𝑡𝑘𝑘 ,𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑘𝑘

Optimization

◦ 𝑈𝑈(𝑡𝑡𝑘𝑘) = arg max
𝑈𝑈(𝑡𝑡𝑘𝑘)

(𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡𝑘𝑘 ) = argmax
𝑈𝑈(𝑡𝑡𝑘𝑘)

𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡𝑘𝑘 − 𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡𝑘𝑘

Smart Black Box Optimizer – Low-bandwidth mode (driving)
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Mode description
◦ When the car is driving with strong low-cost internet connectivity,  the optimizer can store valuable data in onboard 

memory and also upload the most valuable data to the cloud.

Formulation

◦ State:    𝑋𝑋(𝑡𝑡𝑘𝑘) = 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡𝑘𝑘 , 𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡𝑘𝑘 , 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑘𝑘 , 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑘𝑘 , 𝑀𝑀 𝑡𝑡𝑘𝑘

◦ Action:  𝑈𝑈(𝑡𝑡𝑘𝑘) = 𝑟𝑟𝑖𝑖𝑖𝑖 𝑡𝑡𝑘𝑘 ,𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑘𝑘 ,𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑘𝑘

Optimization

◦ 𝑈𝑈(𝑡𝑡𝑘𝑘) = arg max
𝑈𝑈(𝑡𝑡𝑘𝑘)

(𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑘𝑘 + 𝜆𝜆 ∗ 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡𝑘𝑘)) = argmax
𝑈𝑈(𝑡𝑡𝑘𝑘)

𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑘𝑘 − 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑘𝑘 + 𝜆𝜆 ∗ 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡𝑘𝑘 − 𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡𝑘𝑘

◦ where 𝜆𝜆 ∈ 𝑅𝑅, 𝜆𝜆 > 0 is a user-defined weight to establish relative priority for local vs. cloud-based data storage. 

Smart Black Box Optimizer – High-bandwidth mode (driving)
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Mode description
◦ When the car is not running and a high-bandwidth low-cost internet connection is available (e.g. in the owner’s garage), 

the smart black box can transmit all valuable data to the cloud over time.

Formulation
◦ 𝑟𝑟𝑖𝑖𝑖𝑖 𝑡𝑡𝑘𝑘 zero: no new data

◦ State: 𝑋𝑋(𝑡𝑡𝑘𝑘) = 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑘𝑘 , 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑘𝑘

◦ Action: 𝑈𝑈(𝑡𝑡𝑘𝑘) = 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑘𝑘 ,𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑘𝑘

Optimization

◦ 𝑈𝑈(𝑡𝑡𝑘𝑘) = arg max
𝑈𝑈(𝑡𝑡𝑘𝑘)

(𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑘𝑘 ) = argmax
𝑈𝑈(𝑡𝑡𝑘𝑘)

𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑘𝑘 − 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑘𝑘

Smart Black Box Optimizer – “Garaged” mode

10/28/2016 14



Lidar Data
Ford Campus Vision & Lidar Data:

360° horizontal field of view

26.8° vertical field of view

0.08° horizontal angular resolution

0.4° vertical angular resolution

10 Hz

Measures the distance to objects 

at certain angles:
𝑟𝑟 = dist (𝜃𝜃,𝜑𝜑)

Road edges
Car position



Why save Lidar data?
Potentially useful for:

Accident Diagnosis:
◦ Uptake collects sensor data up to for 24 months

Anomaly Detection:
◦ Boeing downloads 1TB of data for every flight

Driving Pattern Analysis:
◦ Nationwide provides member discounts based on their driving patterns



Lidar based obstacle extraction - review 
• Ford Campus Vision and Lidar Data

• http://robots.engin.umich.edau/SoftwareData/Ford
• Lidar Reference Frame

left
right

ground

Above-ground Road edges
Car position
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Size of Lidar Data
80,000 of (x, y, z) coordinates, every 0.1 second

Say, a floating point takes 4 bytes, then
• 34.56 GB / hour
• 3.1 TB / month (with 3 hours drive every day)
• USD 100 / month for every vehicle (newegg HDD price)

Hard to compress due to few repetitions
◦ So, we perform Data Reduction



Possible Ideas for Data Reduction
1. Random Sampling
◦ Simple, Fast
◦ No guarantees on errors (different from aggregation)

2. Image Processing
◦ Well-developed theories/algorithms
◦ We lose distance information completely

3. Choosing a subset S (of size K) that minimize errors
min𝑆𝑆�

𝜃𝜃
�

𝜑𝜑
(dist 𝜃𝜃,𝜑𝜑 − 𝑅𝑅𝑆𝑆(𝜃𝜃,𝜑𝜑))2

where 𝑅𝑅𝑆𝑆(𝜃𝜃,𝜑𝜑) is an estimate based on S.
◦ Small errors on average compared to random sampling
◦ No idea on how bad / good



Our Proposal: Absolute Guarantee
Absolute Guarantee on Error:

argmin𝑆𝑆 �
𝜃𝜃

�
𝜑𝜑

𝑅𝑅𝑆𝑆𝑙𝑙 𝜃𝜃,𝜑𝜑 + 𝑅𝑅𝑆𝑆𝑢𝑢 𝜃𝜃,𝜑𝜑
2

− dist 𝜃𝜃,𝜑𝜑
2

such that

𝑹𝑹𝑺𝑺𝒍𝒍 𝜽𝜽,𝝋𝝋 ≤ 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝜽𝜽,𝝋𝝋 ≤ 𝑹𝑹𝑺𝑺𝒖𝒖(𝜽𝜽,𝝋𝝋) and            𝑆𝑆 = 𝐾𝐾

dist 𝜃𝜃,𝜑𝜑 : True distance at angle 𝜃𝜃,𝜑𝜑

𝑅𝑅𝑆𝑆𝑙𝑙 𝜃𝜃,𝜑𝜑 : Lower bound (estimated from S)

𝑅𝑅𝑆𝑆𝑢𝑢 𝜃𝜃,𝜑𝜑 : upper bound (estimated from S)

Benefits:

Not only a point estimate, but an error bound

Absolute bounds on calculating:  (1) Distance to a front car, (2) Relative speed with respect to a front car



Estimating Miss Distances
The subset S doesn’t include all data points.

But, if S includes other points near (𝜃𝜃,𝜑𝜑),

we can get pretty good estimates.

Reconstruction Model: Interpolation (in 3d)!

Visualization of original data points

Our reconstruction by interpolating 
from sampled data points



• Training iterations and parameters
• Less iterations, tune the parameters

• Performance
• On existing test videos, the BVLC_caffenet trained on nasa_256 works much better than 

CIFAR10_caffenet trained on nasa_32.
• It’s hard to classify the aircraft types (bixler, sr2 or y6?)
• The validation accuracy of  CIFAR10_caffenet is around 75%, but the accuracy is much lower 

when testing
• Overfitting 

• Some of  the training cases could be overfitted but we need more diverse test videos to prove 
that. For example,100,000 iterations is more likely to be overfitted, but 5,000 iterations also can 
overfit data.

Ongoing Camera based object detection
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11 categories:
Car(C)
Truck(T)
Wagon(W)
Building(B)
Tree(R)
Traffic sign(N)
Lane(L)
Toll(O)
Edge(E)
Sky and cloud(S)
Motorcycle(M)

Transformation

More diversity, 
more information

Video object detection with Caffe Deep CNN – Car dataset
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Probabilities:  
0.720(C), 
0.509(T), 
0.809(C), 
0.524(C), 
0.619(C)

Camera based object detection – Car detection results
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