

NSF CMMI #1734461, #1734360

NRI-2.0: INT: Manufacturing America:

In-Situ Collaborative Robotics in Confined Spaces

Nabil Simaan¹

Howie Choset²

Andrew Orekhov¹

Colette Abah¹

Garrison Johnston¹

¹ Vanderbilt University

² Carnegie Mellon University

Introduction

Motivation:

- WMDs: Work related musculoskeletal disorders: risks increase in confined space
- Over 600,000 WMD/year account for 34% of lost workdays

Vision:

• Enable safe and highly dexterous cooperative robotic manipulation in deep confined spaces.

Approach:

- Reconfigurable serial-continuum robots
- Whole body sensing and interaction
- Planning and control for bracing
- Sensing & environment model update

Envisioned Embodiment

Planning, Sensing & Control

Evaluation

• Evaluate tasks in cooperative manipulation & tele-manipulation

User Placement	Caulking		Pipe Assembly	Sanding
	Ex-situ	In-situ	In-situ	In-situ
Collabora- tive Nature	Geometric virtual fixture (VF)	Collaborative VF	Collaborative admittance	Collaborative admittance control
Evaluation metrics	Task completion time, Tool path stability, User force			

Program Themes:

- Societal impact → WMD reduction
- Scalability → reconfigurable
- Collaboration → whole arm multi-point physical interaction
- Physical embodiment → Continuum articulated design
- Lowering barriers to entry → Intelligent cooperative control

Full Robot Assembly

- Design for passive and active safety
- Capable of bracing
- Capable of mapping
- Reconfigurable

- Minimal actuation
- Compliant
- Sensing along its length (contact, proximity, force)

Sensory Acquisition Module

- Proximity sensing
 Con
- Contact detection
 Force sensing

v1

V2

Time-of-Flight Sensor

Hall-effect Contact/ Force Sensor

Sensory Disk Characterization

- Touch sensors were calibrated to determine relationship between applied force and magnetic sensor reading
- Time of flight sensors were characterized to determine
 - Size of the detection cone
 - Error in detection cone
 - Variation from surface reflectivity

Continuum Segment Module

Integrated string potentiometers for shape sensing

 Goal: estimation of joint loads from deflected (sensed) shape

Real-Time Shape Sensing with String Potentiometers

Bracing and Redundancy Resolution For Underpowered Robots

- Kinematic and compliance modeling of braced manipulators
- Redundancy resolution strategy: Use gradient projection to
 - Maintain bracing constraints
 - Minimize compliance in a task dependent direction
 - Keep robot from falling off bracing plane
 - Maximize kinematic isotropy

9

Video Demonstrating Redundancy Resolution Strategy Simulation

[1] G.L.H. Johnston, A.L. Orekhov, and N. Simaan. "Kinematic Modeling and Compliance Modulation of Redundant Manipulators Under Bracing Constraints." 2020 IEEE International Conference on Robotics and Automation. [Accepted Jan. 2020].

Using Sensory Disk for Bracing

- The sensor disk can be used to identify regions in the environment that are acceptable for bracing
- Completed experiments on mapping environment and extracting acceptable and unacceptable bracing regions

Using sensory disk to identify bracing plane

Using sensory disk to map the environment

[2] C. Abah, A.L. Orekhov, G.L.H. Johnston, P. Yin, H. Choset, and N. Simaan, "A Multi-modal Sensor Array for Safe Human-Robot Interaction and Mapping." *IEEE International Conference on Robotics and Automation (ICRA)*. May 2019.

pHRI with Sensory Disk

- The sensory disk can be used to control the robot using direct contact or via the time of flight sensors
- Adds additional sensing for admittance

control and safety awareness

Using touch sensors

Using ToF sensors while bracing

[3] A. L. Orekhov, G.L.H. Johnston, C. Abah, H. Choset, and N. Simaan, "Towards Collaborative Robots with Sensory Awareness: Preliminary Results Using Multi-Modal Sensing," in ICRA 2019 workshop "Physical human-robot interaction: a design focus," May 2019

Solve a trajectory optimization problem

<u>Given:</u>

- Trajectory of configurations and velocities
- Constraints
 - o e.g., arm must stay in upper half-plane
 - e.g., satisfy a torque limit

<u>Goal:</u> Minimize cost of the trajectory while satisfying the constraints

<u>Note:</u> Robot parameters and (possibly discontinuous!) dynamics <u>Need</u>: Cost function (typically penalizes final distance to a goal, control action, etc.)

Formal Problem Statement

<u>Given:</u>

- An initial robot trajectory x and its associated control actions u
 - $x = (x_1, x_2, ..., x_T), u = (u_1, u_2, ..., u_T)$
 - Should look mostly reasonable, but may violate constraints
- Constraints h_j , for $j = 1, 2, ..., n_{constraints}$
 - We require that $h_j(x_i, u_i) < 0$ for all i = 1, 2, ..., T

With:

- The (possibly discontinuous) robot dynamics function f
 - For any starting state x_i and any control input u_i , the resulting state is $x_{i+1} = f(x_i, u_i)$
- A cost function L (for now, we provide the cost function)

$$L(x, u) = L_T(x_T) + \sum_{i=1}^{T-1} L_i(x_i, u_i)$$

<u>Goal:</u>

• Find *x* and *u* to (locally) minimize *L*, while satisfying the dynamics and constraints

Why This Problem Is Hard

- Contact and interaction with obstacles
 - Standard obstacle avoidance methods don't apply
- Discontinuous dynamics
 - Many optimization methods (think gradient descent!) assume a continuous (or worse, differentiable) dynamics function
- Exponentially many possible bracing point combinations

Related Work

- Penalties for constraint violations
 - Numerical instability as the penalties get large
- Augmented Lagrangian method
 - Uses constraint penalties and an iterative estimate of the Lagrange multipliers
 - Penalties don't get as large, so this improves stability
 - Gradient information may make it ignorant to discontinuous dynamics
- ILQG framework allows for bounds on the control
 - But no way to deal with obstacles or their associated dynamics
- Walking and rock-climbing robots can plan foothold locations
 Independent of previous foothold history, which we can't assume

Constraint-Aware ILQR

- For a fixed set of constraints, we can compute Lagrange multipliers and the optimal control policy to exactly satisfy ("activate") those constraints:
 - $(g_i + G_i \delta x_i) + H_i \delta u_i + C_u \lambda = 0$ if the change in control δu_i is a stationary point
 - First two terms compute change in cost-to-go from applying δu_i , as in standard ILQR.
 - Bold term is new. C_u is the matrix of partial derivatives of the active constraints with respect to δu_i , and λ is the vector of Lagrange multipliers.
 - $0 = h_j(x_i + \delta x_i, u_i + \delta u_i) = h_j(x_i, u_i) + \frac{\partial h_j}{\partial x_i} \delta x_i + \frac{\partial h_j}{\partial u_i} \delta u_i$ for any (linearized) active constraint h_j
 - Create and solve a system of linear equations; solve for λ by eliminating each $\frac{\partial h_j}{\partial u_i} \delta u_i$ term
- In the backward step, we use an estimate of active constraints to compute optimal control and cost-to-go
- In the forward rollout, we compute the optimal control for each active constraint set and select the cheapest allowed control

Some Results

Top row:

Arm starts folded into a triangle, and braces with the first joint to reach the target. The target is barely reachable if bracing with the first link

- 35 iterations
- 75 seconds
- Stabilizes in ~5 iterations
- Can replan mid-execution

Bottom row:

9 link arm extending horizontally

- Not fully optimized
- Each iteration takes at least a minute depending on how many active constraint sequence guesses are used

Uncertainty-based planning

