NRI: INT: COLLAB: Mesh Of Robots on a Pneumatic Highway (MORPH): An Untethered, Human-Safe, Shape-Morphing Robotic Platform Award #: CMMI 1925373, Poster #45

PI: Elliot W. Hawkes (UC, Santa Barbara); PI: Sean Follmer, co-PI: Mac Schwager (Stanford University)

Challenge

How can we create untethered soft robots capable of dramatic shape change?

Solution

• Iso-PERI-metric soft robots with an effective constant volume

Scientific Impact

- New Robotic Architectures
- Distributed Control Methods
- Soft Inflated Tube Mechanics

Broader Impact

- Search and Rescue
- Human Safe Interaction
- Robotic Platform for exploring **Kinematics**

2021 NRI & FRR Principal Investigators' Meeting March 10-12, 2021

Modeling: Grasp Analysis with Isoperimetric Truss Robots

Compliant truss robots can grasp objects with large contact areas and even force distribution

We use a direct stiffness model to predict

- Grasp forces
- Contact region
- Structure deformation
- Grasp stiffness

Hammond, Z. M. & Follmer, S. "Grasp analysis and manipulation kinematics for isoperimetric truss robots." *ICRA 2021, (Under Review)*

Distributed estimation and control of isoperimetric truss robots

- Consensus ADMM enables scalable distributed state estimation and control.
- The nodes converge to jointly optimal velocities while enforcing local constraints.

2021 NRI & FRR Principal Investigators' Meeting March 10-12, 2021

Hardware Exploration: Soft Cellular Robots

- Nodes and links of truss can be represented as size-changing spheres
- Groups of these "cellular robots" could form a collective to perform locomotion, shape change, and apply forces

Volume increase

P₁

Friction increase

P₂

P₃

Disconnection control

P₃

P₄

P, < P, < P, < P,

Devlin, M.R., Young, B.T., Naclerio, N.D., Haggerty, D.A. and Hawkes, E.W., An untethered soft cellular robot with variable volume, friction, and unit-to-unit cohesion. *IROS2020*.

Acoustic Sensing and Communication for Inflated Soft Robots

Multifunctional, low-cost components that take advantage of the robot's structure

D. S. Drew, M. Devlin, E. Hawkes, and S. Follmer, "Acoustic Communication and Sensing for Inflatable Modular Soft Robots," *ICRA2021, Under Review*

2021 NRI & FRR Principal Investigators' Meeting March 10-12, 2021

NRI: INT: COLLAB: Mesh Of Robots on a Pneumatic Highway (MORPH): An Untethered, Human-Safe, Shape-Morphing Robotic Platform Award #1925373

PI: Elliot W. Hawkes (UC, Santa Barbara); PI: Sean Follmer, co-PI: Mac Schwager (Stanford University)

Challenge

 How can we create untethered soft robots capable of dramatic shape change?

Solution

 Iso-PERI-metric soft robots with an effective constant volume

Scientific Impact

- New Robotic Architectures
- Distributed Control Methods
- Soft Inflated Tube Mechanics

Broader Impact

- Search and Rescue
- Human Safe Interaction
- Robotic Platform for exploring Kinematics

2021 NRI & FRR Principal Investigators' Meeting March 10-12, 2021