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Societal need for smart and autonomous 
CPS – high performance buildings
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Challenges and opportunities for 
smart and autonomous CPS

q How to leverage data availability and AI/ML?

q How to combine data-driven machine leaning and 
model-based learning  to automate the discovery of 
optimal policies for real-time control?



Use of traditional RL to build 
smart controllers
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RL Controller
(𝜋: 𝑆 → 𝐴)

Environment
(𝑃: 𝐴, 𝑆 → 𝑆!, 𝑅)

Real Building

Control Actions(𝐴)
• Subject of control
• Number of control points

Onsite 
Renewable

Smart Grid

HVAC Energy Storage

Hot Water

Rewards(𝑅)
• Energy
• Flexibility & costs
• Comfort 

States (𝑆)
• Current
• Previous
• Predicted

Real-World Challenges
q Learn from live systems
q Partially observable 

systems
q Learning in high-

dimensional spaces
q Learning multiple 

objectives
q Deal with unknown 

delays
q Full system constraints
q Provided explainable 

policies



Use of traditional RL to build smart 
controllers

Challenges 
q System, environment, rewards models do not match reality
q Policy function may be over-optimized for the wrong models 
q RL in real system takes very long time
q Hard to guarantee good RL performance in real system
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Simulation-based RL

Transfer 
learned policy 

function

Real 
Environment

Real 
Systems

Real Rewards

Real-World RL



Find a good policy from a model 
universe - Meta-RL
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Sample environments 𝐸!, 𝐸"⋯ ,𝐸#
for episode 𝑚 = 1,⋯ ,𝑀
for 𝑛 = 1,⋯ ,𝑁
Initialize the parameters of 𝜋$! : 𝜃" = 𝜃%,'
Update 𝜃" with DDPG for 𝑡 = 1,⋯ , 𝑇
Sample transitions 𝒪" = { 𝑠( , 𝑎( , 𝑟( , 𝑠′ } using 𝜋$!
𝑛 = 𝑛 + 1

end for
Update 𝜃% using all trajectories 𝒪!:# by gradient ascent:

𝜃%,'*! = 𝜃%,' + 𝛽+𝛻$",$ ;
"
𝔼 ;

(,!

-

𝑟(𝑠",( , 𝜋(𝑜",(|𝜃"))

𝑚 = 𝑚 + 1
end for

MAML by Finn et al. (2017)

Inner loop: 
Traditional RL

Outer loop:
Find optimal RL

Universe of possibilities with 
quantified uncertainties



Find a good policy from a model 
universe - Meta-RL

Open research questions 
q How  do we automate the construction of model universe with 

uncertainty quantification?
q How do we guarantee the performance of RL algorithm?
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Sampled Environment
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Transfer 
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Real 
Environment

Real 
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Real Rewards

Real-World RL

Universe of possibilities with 
quantified uncertainties

Meta-RL



Use case: AI-Enabled Building 
Energy Expert 
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AI-Enabled Building Energy 
Expert: Impact

q Optimal policies without an accurate building model or a large 
amount of data

q Large-scale deployment of  asset-specific smart control policies by 
non-experts → >$18 billion in annual energy savings
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Foundational Research needs

q Automated configuration of digital twins from 
incomplete information

q Formal knowledge representation of the space of 
dynamical systems  based on computational graphs

q Optimal decision making from limited information 
and data


