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Introduction

•Cyber-Physical Systems (CPS) are deployed in a wide variety of safety critical applications from
avionics, medical, and automotive domains.

• For these applications, it is essential to create a precise specification and formally verify that the
implementation behaves as specified.

• The formal verification of these systems presents a wide variety of challenges.

• Models of these systems must represent the physical world, analog sensors and actuators, computer
hardware and software, networks, and feedback control.

• These models must deal with the fact that correctness may depend on timing, concurrency, system
dynamics, and stochastic behavior.

Unified Modeling Formalism

• Our research project has developed a general unified hybrid system modeling formalism that is capable
of representing continuous and discrete dynamics, timing, and stochastic behavior [2].

• These models must unify elements normally described in a variety of formalisms such as:

– Hardware description languages such as VHDL/VHDL-AMS/SystemVerilog used for hardware.

– Continuous modeling languages such as SPICE and Simulink used for analog circuits and the
physical environment.

– Programming languages such as C for software.

– System level modeling languages such as SystemC for complete systems.

• To achieve these goals, the labeled Petri net (LPN) model has been developed as well as techniques
to generate them from various languages and simulation data.
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Improving Verification Capacity

• The complexity of CPS models makes the formal verification of them extremely difficult.

• To address this, it is essential to develop more scalable verification methods.

• In particular, we have developed:

– Automated model abstraction methods to reduce model complexity [1, 3].

– Partial order reduction methods to address model concurrency [4].

– Symbolic methods to utilize efficient data representations [5].

–Compositional reasoning methods to exploit model structure [6].

Details for our verification methodology.

Motivating Example

• Now possible to integrate multiple cores on a single chip forming a network-on-chip (NoC).

• In automotive electronic systems, there are often more than 50 electronic control units (ECUs) to
operate everything from the entertainment system to the anti-lock breaks.

• Each ECU is statically tied to specific sensors and actuators so processing power cannot be shared,
and an ECU failure causes a malfunction in the corresponding sensor/actuator.

• An NoC approach makes mapping between ECUs and sensors/actuators flexible allowing for sharing
of processing power and enabling fault tolerance by having spare units.

• Prof. Yoneda (NII/Tokyo) and his colleagues are designing such an NoC of ECUs.
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A 4x4 NoC routing mesh of automotive ECUs.

• An NoC routing protocol must be carefully designed to avoid deadlock and be fault-tolerant while
still achieving latency and throughput goals.

• Glass/Ni propose restricting the allowed “turns” in order to guarantee absence of deadlock and that
a packet can always be routed around a single failed router.

• If faults occur on the links, the Glass/Ni protocol can experience deadlock and a single link failure
can cause a packet to not be routable.
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Deadlock problem Fault forwarding Our new protocol

• Yoneda et al. proposed a modified version of the protocol which forwards fault information, but this
method still cannot consider link failures on the south and west edges of the grid.

• Our new routing protocol allows illegal “turns” without blocking on them, resulting in both deadlock
freedom and a guarantee to avoid any single link failure without extra fault forwarding hardware.

LEMA Verification Tool

• CPS systems such as this NoC router design are complex, and various aspects must be verified.

• Complicated by the need to reason about concurrent, timing, and stochastic behavior.

• Developing LEMA, a verification tool for CPS.

• This tool must be able to verify numerous things including:

– Functional properties such as the protocol does not deadlock, and the circuit implementation is
free of hazards.

– Timing properties such as meeting a required response time.

– Stochastic properties such as the probability of a packet being lost.

• A prototype version of LEMA for Windows, Linux, and MacOS is available from our website.
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Conclusion

• The verification methods proposed will enable the design and implementation of cyber-physical sys-
tems with higher reliability and fault tolerance.

• Since such systems are becoming ubiquitous, these improvements should have tremendous impact.

• The abstraction and hierarchical approaches will allow large systems to be analyzed and verified in a
unified framework efficiently, thus improving confidence in the final products.

• Should allow design margins to be reduced, improving performance and reducing cost.

• Please see: http://www.async.ece.utah.edu/CPS-Project/
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