
SL2SX Translator: From Simulink to SpaceEx Models

Stefano Minopoli
VERIMAG

Centre Équation - 2, avenue de Vignate
38610 GIÉRES

stefano.minopoli@imag.fr

Goran Frehse
VERIMAG

Centre Équation - 2, avenue de Vignate
38610 GIÉRES

goran.frehse@imag.fr

ABSTRACT
The tool Matlab/Simulink is a numerical simulation envi-
ronment that is widely used in industry for model-based de-
sign. Numerical simulation scales well and can be applied to
systems with highly complex dynamics, but it is also inher-
ently incomplete in the sense that critical events or behav-
ior may be overlooked. The application of formal verifica-
tion techniques to Simulink models could help to overcome
this limitation. Set-based verification tools such as SpaceEx
use as underlying formalism hybrid automata, which are se-
mantically and structurally different from Simulink models.
To address this issue, we are building the tool SL2SX for
transforming a subset of the Simulink modeling language
into a corresponding SpaceEx model. Our method is de-
signed to preserve the syntactic aspects of a given Simulink
diagram: the resulting SpaceEx model shows the same hi-
erarchical structure and preserves the names of components
and variables. Placeholders with the correct interface are
provided for unsupported Simulink blocks, which can then
be translated manually. We illustrate the tool SL2SX and
the verification of the transformed models in SpaceEx on
two examples provided by the Mathworks example library.

1. INTRODUCTION
Matlab/Simulink [17] is a software tool widely used in in-

dustry to model and simulate physical systems. For mod-
eling, it provides a set of standard blocks from which one
can hierarchically create a block diagram of the system. For
simulating, it provides an extensive library of solvers, each
of which determines the time of the next simulation step
and applies a numerical method to solve the set of ordi-
nary differential equations arising from the model. Different
from simulation, formal verification can provide complete
coverage, and hence it can be used to ensure whether or not
a model meets a requirement. To apply formal verification
techniques, it is necessary to switch from a simulation model
to a verification model. Such a transformation needs to take
into account the inherent differences between the two classes

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HSCC 2016 Vienna, Austria
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

of models. Typically, a simulation model contains details
that need to be abstracted away for the verification model.
A verification model can be enriched with nondeterminism
to check the system behavior for a whole range of param-
eters, disturbances, user inputs, etc. Simulink uses must
semantics, also called urgent or ASAP semantics, meaning
that a transition must be taken as soon as its guard is satis-
fied. Verification models, such as hybrid automata (HA), are
typically defined with may semantics, in which the system
can delay the transition as long as the invariant (staying
condition) is satisfied. This may affect the quality of the
model transformation, resulting in overapproximations, and
the complexity of the model, resulting in state space ex-
plosion. Simulink lacks an actual formal description of its
semantics. For the basic blocks one can resort to their ideal
mathematical interpretation, but a wide variety of complex
blocks is included in the standard Simulink library, many
of which are beyond direct translation to functional models
such as hybrid automata. Clearly, the process of translat-
ing a Simulink diagram into a verification model is not an
easy task, and a fully automatic approach seems to be not
plausible.

Verification tools like SpaceEx [10] use Hybrid Automata
(HA) [11] as models and check safety properties using reach-
ability algorithms. Our goal is to make the tool SpaceEx
applicable to Matlab/Simulink models. The SpaceEx veri-
fication language is able to preserve the structure and the
hierarchy of a Simulink diagram, using basic and network
components (a single hybrid automaton and a network of
them, respectively). Preserving the structure of the sim-
ulation model is not just a secondary aspect because, as
described in [26], the structure has a profound impact on
several aspects of safety-critical model development. In this
paper, we present the tool Simulink to SpaceEx Transla-
tor (SL2SX) that takes a Simulink model (in xml format)
as input, and generates a network of hybrid automata in
a format compatible with SpaceEx verification tool. Since
the SX format closely resembles the mathematical defini-
tion of hybrid automata (modulo template and parameter
instantiations), SX models can be automatically translated
for other verification tools based on hybrid automata. The
HyST translation tool [4] provides translations from SX to
the verification tools Flow* [7], dReach [12], HyCreate [3],
and HyComp / HyDI [9].

Our translation is based on the ideal interpretation of
Simulink semantics [14]. The translation preserves all struc-
tural aspects of the Simulink diagram. Moreover, the trans-
lator preserves the names of blocks, variables, and compo-

nents, as well as the graphical positions and dimensions of
blocks. The must semantics of Simulink are handled by en-
hancing SpaceEx with urgent conditions [21]. A restriction
of our approach is that SpaceEx is currently limited to piece-
wise constant and piecewise affine dynamics.
The translation process of SL2SX is not fully automatic,

meaning that the SpaceEx model needs to be completed
manually by adding hybrid automata to model blocks for
which no translation is given. The tool aids in the com-
pletion process by adding placeholders with proper interface
for the missing blocks. Having the mechanical aspects of the
model transformation being carried out by a tool reduces er-
rors and results in a model that can be easily compared with
the Simulink diagram, due to the preservation of structure
and names of blocks and variables. The tool SL2SX together
with models in this paper are available online [20].
A variety of different approaches to verify Simulink mod-

els has been reported in literature. The tools HyLink [15]
and GreAT [1] translate a Simulink diagram into hybrid au-
tomaton expressed by intermediate formats (i.e. hybrid in-
put/output automata (HIOA) [22] and hybrid system inter-
change format (HSIF) [24], respectively). Both formalisms
are not able to model hierarchy and must semantics. The
tool Checkmate [23] provides a Simulink toolbox contain-
ing additional blocks that the designer is allowed to use. A
Simulink model thus obtained is then translated into the spe-
cial class of Polyhedra Invariant Hybrid Automata (PIHA)
[8]. The PIHA formalism uses ordinary differential equa-
tions (ODE) to express the dynamics, hyperplanes for guard
transitions and only identity as update functions. Hierarchy
can not be handled, and moreover the PIHA may semantics
cause overapproximation when modeling must transitions.
Other formalisms than hybrid automata are also used. In
[25], the discrete part of a Simulink model is translated to a
pushdown automaton defined by the SAL transition system
language [5], while the differential equations arising from the
Simulink component are converted into difference equations.
The resulting model is a discretization of the original. The
tool S2H [28] translates Simulink models into the Hybrid
CSP (HCSP) formalism [13], based on the separation of vari-
able definitions, process definitions, assertion definitions and
goals to be proved. This results in a loss of compositional
properties and the obtained model may be hard to compare
with the original. The tool HySon [6], performs set-based
simulation with“imprecise”or“uncertain” inputs directly on
a Simulink model. The aim is to compute a good approxi-
mation of the set of all possible Simulink executions. Being
based on numerical simulation methods, HySon is able to
handle systems with both nonlinear dynamics and guards,
and zero-crossing events are properly treated. We expect
that for certain classes of systems, SpaceEx, whose algo-
rithms are highly optimized for piecewise affine dynamics,
can outperform the more general algorithm of HySon. A di-
rect comparison is not possible since HySon is not publicly
available.

2. SIMULINK, HYBRID AUTOMATA AND
SPACEEX

We briefly introduce the modeling language of Simulink,
the formalism of hybrid automata and the SpaceEx verifica-
tion tool, highlighting the features relevant to the translation
process.

Figure 1: A Matlab/Simulink block diagram

2.1 Simulink Models
Simulink is an environment for simulation and model-

based design for dynamic and embedded systems. It pro-
vides an interactive graphical environment and a customiz-
able set of blocks that let one design, simulate, implement,
and test a variety of time-varying systems. The modeling
language lacks a formal and rigorous definition of its seman-
tics, usually estimated by either the ideal or the numerical
simulation interpretation [14]. A Simulink design is repre-
sented graphically as a diagram consisting of inter-connected
Simulink blocks. It represents the time-dependent mathe-
matical relationship between the inputs, states, and outputs
of the design. Figure 1 depicts an example of Simulink dia-
gram, whose signal that drives the switch blocks is modeled
by the hybrid dynamics ẋ = c + u, when x ≥ 0, and ẋ = c
otherwise (where x is the integrator output).

The follows definition derives from [2]. A Simulink model
SL = ⟨D,B,C⟩ consists of the following components:

• A set D of variables, partitioned into input variables
DI and output variables DO.

• A set B of Simulink blocks. Each block b ∈ B has in-
puts, outputs, and parameters. The input and output
variables are associated with input and output ports.
A Simulink block can be itself a Simulink Diagram;
such a block is called a subsystem.

• An ordered relation C ⊆ B×B represents connections
between blocks. A connection c = ⟨b, b′⟩ ∈ C connects
an outport of b with an inport of b′ and represent the
flow of the data between the corresponding variables
of b and b′.

Simulink uses must semantics, meaning that discrete events
happen as soon as possible a given condition (guard) is sat-
isfied (also referred as urgent or as-soon-as-possible (ASAP)
semantics).

2.2 Hybrid Automata
Hybrid automata [11] are a verification modeling formal-

ism that combines discrete states (modeled by locations)
with continuously evolving, real-valued variables. The dis-
crete states and the transitions from one state to another are
described with a finite state-transition system. A change in
discrete state can update the continuous variables and mod-
ify the set of differential equations that describes how vari-
ables evolve with time. Hybrid automata are nondeterminis-
tic, which means that different futures may be available from
any given state. Rates of change or variable updates can be
described by providing bounds instead of fixed numbers. In-
complete knowledge about initial conditions, perturbations,
parameters, etc. can easily be captured in this way. A spe-
cific source of nondeterminism is due to the may semantics.

(a) network component

(b) HA for “constant” (c) HA for “integrator”

(d) HA for “sum” (e) HA for “switch”

Figure 2: SpaceEx model for the Simulink diagram
in Figure 1

This means that a transition may happen at any time the
associated guard is satisfied, but it may also be delayed as
long as the invariant (staying condition) of the discrete state
is satisfied. Hybrid automata with urgency conditions allow
the definition of a urgency condition for each location. A
must transition can be easily encoded by adding its guard
as urgent condition to the source location. For the class of
LHA, an exact reachability algorithm is available [21].

2.3 SpaceEx
SpaceEx is a development platform for verification algo-

rithms based on hybrid automata. of a system, modeled
by the SpaceEx definition language. The SpaceEx verifica-
tion engine provides specific reachability algorithms, called
scenarios, and each of them may come with its own set rep-
resentation, apply to its own class of models, and produce
a different kind of output. The scenarios include a formally
exact algorithm for piecewise constant dynamics (PHAVer),
two variations of template-based approximate reachability
algorithms for piecewise affine dynamics (LGG and STC),
and a simulation algorithm that mimics reachability analysis
by random sampling of the initial states.
A SpaceEx model is similar to the standard hybrid au-

tomata, syntactically extended with hierarchy and templates.
A SpaceEx model consists of one or more components. Each
component has a set of formal parameters, like continuous
variables, constants, and synchronization labels. A formal
parameter is part of the interface of a component, unless it
is declared as local to the component. There are two types
of components: Base Components correspond to a single
hybrid automaton, and Network Components allow the in-
stantiation one or more components (base or other network
components), possibly assigning values to their constants.
A network component is a parallel composition of its sub-
components. When instantiating a component A in network
B, one must specify what happens to each of the formal pa-
rameters in its interface. This is called a bind. Every formal
parameter of A must be bound to either a formal parame-
ter of B or to a numeric value. Components inside B can

(a) Simulink subsystem (b) SX component

Figure 3: The translation from a Simulink subsys-
tem to an SX component preserves the interface

be connected by binding their variables to the same sym-
bols in B. Because of the acausal semantics, the variables
binding does not distinguish source and destination (non-
oriented connection). Figure 2(a) depicts a SpaceEx model
of the Simulink model in Figure 1, whose components are
the hybrid automata in Figures 2(b)–2(e).

Formally, a SpaceEx model SX = (Comp,Bind) has

• a set Comp of SpaceEx components, partitioned into
the set Compb of basic components and the set Compn
of network components. Each component b ∈ Comp
has a set of formal parameters, including a set of vari-
ables V arb. For lack of space, we omit the discussion
about synchronization labels and local variables.

• a relation Bind ⊆ Compn×Comp that associates each
network component with a set of components (includ-
ing other networks components). Each variable of a
component associated to a network, is also a variable
of the network. For each (n, c) ∈ Bind, a mapping
Mapn,c : V arc → V arn associates to each basic vari-
able a network variable.

3. FROM SIMULINK TO SPACEEX
The translator analyzes a Simulink model SL = ⟨D,B,C⟩

and produces a SpaceEx model SX = (Comp,Bind). B is
the set of Simulink blocks and C the set of connections be-
tween blocks. Each basic Simulink block (i.e., not a subsys-
tem) is associated to a SpaceEx basic component, while each
subsystem is modeled by a network component. Simulink
connections are expressed by mapping related variables. Be-
cause Simulink connections are oriented, while SpaceEx map-
pings are not, this task requires some additional considera-
tions as explained in Section 3.3.

An unsupported block is represented by a placeholder with
the correct interface. The placeholder is a basic component,
with all the necessary variables and mappings, consisting of
an empty hybrid automaton.

3.1 Translating Blocks
For each block bi ∈ B, such that bi is not a subsystem, an

inport or an outport, the translator adds to the set Compb
the corresponding SpaceEx basic component (an hybrid au-
tomaton) with same the name of bi. For each input and
output of bi a variable is added to V arb. If bi is an inport or
an outport, then the translator adds to the network compo-
nent containing bi a corresponding variable with the same
name.

A continuous Simulink is represented by a hybrid automa-
ton with a single location, where the algebraic constraints
are included in the invariant and any ODEs are included
in the flow. If the Simulink block contains different modes,
e.g., the switch block, each mode is represented by a loca-

tion, and urgent transitions with appropriate guard condi-
tions model the switching. SpaceEx allows only nonstrict
guards for urgent transitions, since strict urgent guards are
ill defined in continuous time. For example, consider the
trajectory x(t) = t. A transition that must be taken as soon
as x(t) > 0 makes sense in the discrete time steps taken by
a simulator, but in dense time there is no earliest point at
which x(t) > 0. We use the numerical interpretation of the
Simulink semantics, which corresponds to the set of traces
generated by the simulation engine through numerical inter-
pretation. Under this interpretation, similarly to the guard
enlargement considered by Almost ASAP semantics [27], a
strict guard can be relaxed and scaled according to the min-
imum difference d between the values that variables may
assume before and after an integration step. Clearly, d de-
pends on the time step δ. Theorem 1 in [14] guarantees that
as δ approaches to zero, the numerical interpretation con-
verges to the ideal interpretation. Moreover, d converges to
the machine epsilon eps. A strict guard of the form x > 0
(resp., x < 0) is translated into a nonstrict guard of the form
x ≥ eps (resp., x ≤ −eps).

3.2 Translating Subsystems
For each subsystem block b ∈ B, we add to the set Compn

a network component with the same name. In this case, the
translator keeps track of the Simulink blocks bi that belong
to b. Then, for each bi that is not an inport or an outport,
the bind (b, bi) is added to the set Bind. Semantically, the
block is translated to the parallel composition of the hy-
brid automata from its subcomponents. Note that SpaceEx
carries out the parallel composition on the fly, so that only
reachable locations are instantiated. This typically avoids
the construction of the full product automaton, which can
be prohibitively large.

3.3 Translating Block Connections
Once components are added to the network, it is necessary

to decode the set of block connections C. The main issue
for this task is due to the acausal semantics of SpaceEx,
where connections among variables are not oriented. Let
cij = (bi, bj) ∈ C be a Simulink connection that links the
output of the source block bi to the input of the destination
block bj , inside subsystem bs and let b′i, b

′
j and bn be the

SpaceEx components used to model bi, bj and bs, respec-
tively, and Outi and Inj be the variables used to model
source and destination of cij . By definition of SpaceEx
model, Mapn,i contains the mapping between Outi of b

′
i and

Outi of bn, while Mapn,j contains the mapping between Inj

of b′j and Inj of bn. To model cij it is necessary to map Outi
and Inj to the same variable. This is done by mapping the
destination variable to the source variable. If the source
Outi is connected to many destinations Inz (i.e. there ex-
ists at least another ciz = (bi, bz) ∈ C), the translator re-
places each mapping in Mapnz that involves variable Inz,
by the mapping between Inz and Outi. This technique does
not preserve the names of variables that model outports,
which is one of our goals. An outport can be only a destina-
tion, and hence the corresponding variable will be replaced
by the variable that corresponds to the source. In order
to fix this issue, an additional step replaces, for each map-
ping Mapn,i(Outi) = Outj such that Outi is an outport, all
the mappings Mapn,z(x) = Outj by Mapn,z(Inz) = Outi,
where x is a variable that models a source. At the end of this

(a) Simulink model

(b) translated SX model

Figure 4: Models for the Foucault pendulum.

task, all variables Outi modeling outports appear in the net-
work interface. The block interface is therefore preserved,
as illustrated in Figure 3.

4. CASE STUDIES
We illustrate the translation with two Simulink models

from the Mathworks examples library and show results ob-
tained with SpaceEx on the translated SX models.

4.1 Foucault Pendulum
Figure 4(a) shows a Simulink model of a Foucault pen-

dulum, taken from the Mathworks examples library [19].
The SL2SX translator produces a complete SpaceEx model,
shown in Figure 4(b), without manual intervention.

The translator also extracts simulation parameters from
the Simulink file and stores them in a configuration file for
SpaceEx. Figures 5(a) and 5(b) show simulation runs ob-
tained by Simulink and SpaceEx, starting from an initial
pendulum length of x = 0.67.

To demonstrate the results of a reachability analysis with
SpaceEx, we relax the initial condition to the interval x ∈
[0.669, 0.671]. We show the overapproximation obtained by
running two different analysis algorithms of SpaceEx. Figure
5(c) shows the output of the LGG algorithm for a flowpipe
tolerance of 0.01, and Figure 5(d) shows the result of the
STC algorithm for a flowpipe tolerance of 0.5. Both sets are
obtained with bounding box template directions and bound-
ing the time horizon in the model to 6 hours. The LGG
scenario takes 8.1 seconds, while the STC scenario takes 5.4
seconds.

4.2 Automotive Suspension
Figure 6 shows a simplified half car model for Simulink,

taken from [18]. The model is a hybrid system, since it in-
cludes two step blocks. Figure 6(a) shows the main Simulink
diagram, while Figure 6(b) depicts the Simulink subsystem

(a) Simulink simulation (b) SpaceEx simulation

(c) reachable states with
SpaceEx/LGG (tol=0.01)

(d) reachable states with
SpaceEx/STC (tol=0.5)

Figure 5: Simulation and reachability analysis for
the position of the Foucault Pendulum

that models the suspension.
The SL2SF translator produces an incomplete SX model,

since the Simulink model includes blocks that are currently
unsupported (i.e. step, mux and demux). The user needs
to remove the components for mux and demux, and directly
map the involved variables. This requires the introduction of
an input variable for all components connected to the mux
input. Then these variables are mapped to the variables
that model the source connection of the mux. Figure 6(c)
shows the SX main system after modeling (removing and
variables mapping) the mux/demux blocks. The user also
needs to build a hybrid automaton to model the unsupported
step block. Such manual completions are not necessarily
very involved; a simple model for the step block is shown in
Figure 9.
Figure 7 shows simulations from Simulink and SpaceEx,

with step time set to 0.01 and with the front pitch initially
at zero. Figure 8 shows the reachable states for the vertical
bounce over a time horizon of 10 seconds, starting with a
front pitch in the interval [0, 0.3]. The LGG algorithm takes
0.55 sec and the STC algorithm 0.41 sec.

5. CONCLUSIONS AND FUTURE WORK
The SL2SX translation tool takes care of the mechanical,

but error-prone, aspects of constructing a hybrid automa-
ton model from a Simulink source. The resulting model pre-
serves the structure and basic graphics, and provides place-
holders for components that need to be completed manually.
The SX model format closely resembles the standard hybrid
automaton formalism. It can be read directly by the veri-
fication platform SpaceEx, and fully automatic translations
to a variety of tools are already available via the translation
tool HyST [4].
Future work will be directed at providing support for more

blocks from various Simulink libraries, as well as translating
Stateflow components [16].

(a) Simulink main system

(b) Simulink suspension subsystem

(c) SX main system.

(d) SX suspension subsystem

Figure 6: A half car model

6. REFERENCES
[1] A. Agrawal, G. Simon, and G. Karsai. Semantic

translation of simulink/stateflow models to hybrid
automata using graph transformations. ENTCS,
109:43–56, December 2004.

[2] R. Alur, A. Kanade, S. Ramesh, and K.C. Shashidhar.
Symbolic analysis for improving simulation coverage of
simulink/stateflow models. In EMSOFT’08. ACM,
2008.

[3] Stanley Bak.
stanleybak.com/projects/hycreate/hycreate.html,
2013.

[4] Stanley Bak, Sergiy Bogomolov, and Taylor T.
Johnson. HYST: a source transformation and
translation tool for hybrid automaton models. In
HSCC’15, 2015.

[5] S. Bensalem, V. Ganesh, Y. Lakhnech, C. Muñoz,

(a) Simulink simulation. (b) SpaceEx simulation.

Figure 7: Vertical bounce for the suspension models,
with the front pitch initially at zero

(a) reachable states with
SpaceEx/LGG (tol=0.001)

(b) reachable states with
SpaceEx/STC (tol=0.001)

Figure 8: Reachable states of the vertical bounce,
starting with the front pitch in a given interval

S. Owre, H. Rueß, J. Rushby, V. Rusu, H. Säıdi,
N. Shankar, E. Singerman, and A. Tiwari. An
overview of SAL. In LFM’00. NASA Langley Research
Center, 2000.

[6] O. Bouissou, S. Mimram, and A. Chapoutot. Hyson:
Set-based simulation of hybrid systems. In Rapid
System Prototyping (RSP’12), 2012.

[7] Xin Chen, Erika Ábrahám, and Sriram
Sankaranarayanan. Flow*: An analyzer for non-linear
hybrid systems. In CAV’13, 2013.

[8] A. Chutinan and B. Krogh. Verification of
polyhedral-invariant hybrid automata using polygonal
flow pipe approximations. In HSCC’99. 1999.

[9] Alessandro Cimatti, Alberto Griggio, Sergio Mover,
and Stefano Tonetta. HyComp: An SMT-based model
checker for hybrid systems. In TACAS’15, 2015.

[10] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton,
R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang,
and O. Maler. SpaceEx: Scalable verification of hybrid
systems. In CAV’11, 2011.

[11] T.A. Henzinger. The theory of hybrid automata. In
LICS’96, 1996.

[12] Soonho Kong, Sicun Gao, Wei Chen, and Edmund M.
Clarke. dReach: δ-reachability analysis for hybrid
systems. In TACAS’15, 2015.

[13] J. Liu, J. Lv, Z. Quan, N. Zhan, H. Zhao, C. Zhou,
and L. Zou. A calculus for hybrid CSP. In
Programming Languages and Systems. 2010.

[14] K. Manamcheri. Translation of Simulink/Stateflow
models to hybrid automata. PhD thesis, Graduate
College of the University of Illinois, 2011.

[15] K. Manamcheri, S. Mitra, S. Bak, and M. Caccamo. A

(a) placeholder (b) manually completed HA model

Figure 9: Example unsupported block: Step

step towards verification and synthesis from
simulink/stateflow models. In HSCC ’11, 2011.

[16] MathWorks. Mathworks stateflow: Design and
simulate state machines, September 2012.
mathworks.fr/products/stateflow/.

[17] MathWorks. Mathworks simulink: Simulation et
model-based design, March 2014.
www.mathworks.fr/products/simulink.

[18] The Mathworks. SL model for automative suspension.
mathworks.com/help/simulink/examples/

automotive-suspension.html.

[19] The Mathworks. SL model for Foucault pendulum.
mathworks.com/help/simulink/examples/

modeling-a-foucault-pendulum.html.

[20] S. Minopoli and G. Frehse. SL2SX tool and case study.
www-verimag.imag.fr/~minopoli/SL2SXdemo.zip.

[21] S. Minopoli and G. Frehse. Non-convex invariants and
urgency conditions on linear hybrid automata. In
FORMATS’14, 2014.

[22] S. Mitra. A verification framework for hybrid systems.
PhD thesis, Massachusetts Institute of Technology,
Cambridge, September 2007.

[23] B.I. Silva, K. Richeson, B. H. Krogh, and
A. Chutinan. Modeling and verification of hybrid
dynamical system using checkmate. In ADPM, 2000.

[24] MoBIES team. HSIF semantics. Technical report,
University of Pennsylvania, 2002.

[25] A. Tiwari. Formal semantics and analysis methods for
Simulink Stateflow models. Technical report, SRI
International, 2002.

[26] M. W. Whalen, A. Murugesan, S. Rayadurgam, and
M. P. E. Heimdahl. Structuring simulink models for
verification and reuse. In MiSE’14, 2014.

[27] Martin Wulf, Laurent Doyen, and Jean-François
Raskin. Almost asap semantics: From timed models to
timed implementations. In HSCC’04. 2004.

[28] Liang Zou, N. Zhany, Shuling Wang, M. Franzle, and
Shengchao Qin. Verifying simulink diagrams via a
hybrid hoare logic prover. In EMSOFT’13, 2013.

