
Data-Driven Transfer Learning

PI: Chinedum Okwudire – University of Michigan, Ann Arbor; Co-PI: Raed Al Kontar – University of Michigan, Ann Arbor https://www.nsf.gov/awardsearch/showAward?AWD_ID=1931950&HistoricalAwards=false

Strategy for C-CNC

Technical Solution

- Switch from CC to backup LC whenever uncertainty is high (when there is high probability for inaccurate or poor control)
- Learn from condition monitoring signal (slow FB) and past failure data to predict when to switch from CC to LC to avoid poor/inaccurate control
- Use slow FB to calibrate/update CC to reduce uncertainty

Broader Impact on U.S. Industry

- U.S. is poised to gain huge advantages from a transition to C-CNC because U.S. is by far the market leader in cloud-based services
- Translation of C-CNC to industry will be facilitated through collaboration with a U.S.based company

CPS: Small: Mitigating Uncertainties in Computer Numerical Control (CNC) as a Cloud Service using

CNC is a critical feature in manufacturing machines; it automatically controls the machines based on a set of programmed instructions Traditionally, CNC is run on a local computer that is physically tethered to the controlled machine We envision a future where manufacturing machines are controlled remotely over the internet via cloud-based CNC (or C-CNC)

Run *advanced* feedforward (FF) control algorithms in the cloud

Pre-calculate FF control commands and buffer them to reduce delays Retain fast feedback (FB) loops in local computer

Provide slow feedback from machine to cloud to correct FF controller

Intellectual Merit

Address shortcomings of existing transfer learning methods in:

- past failure data
- condition monitoring data

Broader Impact on Education and Outreach

- New educational curriculum at the University of Michigan to increase the U.S. talent pool in cybermanufacturing and data analytics
- Outreach to middle schoolers in Detroit using \bullet demonstration of transfer learning on a CPS: a 3D printer controlled by a remote brain (C-CNC)

Some Benefits of C-CNC

- Improve performance (e.g., speed and accuracy) of CNC at low cost using advanced algorithms
- Enable machine-to-machine learning and data sharing

Some Challenges of C-CNC

- Poor control due to unpredictable internet latency
- Inaccurate control in the presence of uncertainty, due to heavy reliance on FF control

Predicting failure events from a combination of condition monitoring and

Calibrating physics-based models with functional parameters from

Opportunity to leverage U.S. superior leadership in cloud services (\$200 billion industry) to regain U.S. leadership in national-security-critical CNC and machine tool production industry

