


Mobile Big Data Meets Cyber-Physical System: 
Mobile Crowdsensing based Cyber-Physical 

System for Smart Urban Traffic Control

April	  13,	  2015	  @	  Workshop	  for	  Big	  Data	  Analytics	  in	  CPS:	  Enabling	  the	  Move	  From	  IoT	  to	  Real-‐Time	  Control

Yu	  Wang,	  Yong	  Ge,	  Weichao	  Wang,	  Wei	  Fan	  
University	  of	  North	  Carolina	  at	  Charlotte



Outline

• Introduction	  
– Urban	  Traffic	  Control	  and	  Traffic	  CPS	  
– Mobile	  Crowd	  Sensing	  and	  Mobile	  Big	  Data	  

• Mobile	  Crowd	  Sensing	  based	  CPS	  
– Overall	  System	  Design	  
– Smartphone	  Sensing	  
– Mobile	  Social	  Media	  Mining	  
– Traffic	  Control	  

• Challenges	  of	  MCS	  based	  CPS	  
• Conclusion



Traffic	  Problems

• Traffic	  congestion	  in	  US	  remains	  stable	  and	  severe	  
– Travel	  Time	  Index	  remained	   

steady	  at	  1.18	  
– Fuel	  wasted	  in	  congested	  traffic 

reached	  2.9	  billion	  gallons	  
– Total	  financial	  cost	  of	  congestion	   

is	  around	  $121	  billion	  	  

!
!
!
• One	  effective	  way	  to	  solve	  this	  global	  problem	  is	  
smart	  traffic	  control

*	  Urban	  Mobility	  Report	  from	  Texas	    
	  	  	  	  A&M	  Transportation	  Institute



Traffic	  Control	  and	  CPS

• Current	  traffic	  control	  solutions	  
– Pre-‐timed	  Control	  (offline	  with	  deterministic	  demand)	  
– Semi-‐	  or	  Fully-‐actuated	  Control	  (vary	  in	  response	  to	  current	  demand,	  but	  with	  

pre-‐defined,	  fixed	  parameters)	  
– Real-‐time	  Adaptive	  Control	  (respond	  to	  dynamic	  and	  stochastic	  demand)	  

• Real-‐time	  traffic	  control	  rely	  on	  efficient	  monitoring	  
– Monitoring/sensing	  +	  Control	  =	  CPS	  
– Monitoring/sensing	  in	  dynamic	  urban	  environment	  is	  challenging



Mobile	  CrowdSensing

• Mobile	  Crowd	  Sensing	  —	  “Power	  of	  the	  crowd”	  
– Individuals	  with	  sensing	  and	  computing	  devices	  collectively	  share	  data	  and	  extract	  

information	  to	  measure	  and	  map	  phenomena	  of	  common	  interest	  
– Widely	  used	  in	  many	  applications	  -‐	  human	  as	  sensors	  
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EMERGING TOPICS
IN COMPUTING Hu et al.: Vita: A Crowdsensing-Oriented Mobile Cyber-Physical System

Structured activities
<if>, conditional branches of processes
<pick>, multiple execution branches based on incoming

messages.
<sequence>, the sequential execution of sub-activities
<scope>, defines a nested activity with its own associated

elements.
The communications between the cloud platform of Vita

and its mobile platform employ the standard web service
format based on the HTTP protocol and Extensible Markup
Language (XML) data format. In addition, although BPEL
interactions on the Vita cloud side are SOAP based, and
its services in the mobile platform are RESTful Web Ser-
vices based, the SOAP-REST transformation can be achieved
using additional adapters in between, similar to the method
described above forthe cloud platform.

V. APPLICATION EXAMPLE
In this section, we present a concrete application call Smart
City developed on Vita, so as to demonstrate the functional-
ities of Vita and the applications of mobile CPS for crowd-
sensing in our daily lives. Smart City consists of two generic
functions: services, crowdsensing; and two application spe-
cific functions: eating and shopping tour; the screen shots of
some of these functions are shown in Figure 11.

1) GENERIC FUNCTIONS
Services: This function is based on the mobile SOA frame-
work of Vita and takes advantages of the RESTful Web
Service architecture. Application developers could flexi-
bly extend new functions here according to their practical

requirements for different mobile CPS based crowdsens-
ing applications. Furthermore, based on ASCM, develop-
ers could design and develop application specific service
sharing strategies here, which enable the users to easily
share functions in mobile devices’ run-time during some
specific crowdsensing scenarios via the cloud platform of
Vita.
Crowdsensing: This function is mainly based on the

ASCM, social network services of the mobile SOA frame-
work, and the cloud platform of Vita. As demonstrated in
the center screen shot in Figure 11, through this function,
mobile users could post crowdsensing requests through social
networks and find out the potential people who could help
to accomplish the tasks (with the help of social vector in
ASCM), and/or accept new crowdsensing tasks by choosing
the preferable task on the list.

2) APPLICATION SPECIFIC FUNCTIONS
Eating: Beyond the key components of Vita mentioned
above, this function is also based on the location and map
services provided by Google Map. As the screen shot in the
left corner of Figure 11 shows, the eating function consists
of four sub-functions: i-Ask, Search, Comment, and Photo,
it is designed to enable people who travel in a new city to
conveniently find out and/or share food information that they
are interested in real-time.
Here, we set up an experimental application scenario, so as

to demonstrate this function. In this case, it consists of five
persons each carrying an Android phone and has installed
the Smart City. Assume that one of the persons is a visitor
in Hong Kong called Blair who has traveled from Vancouver,

Vita-cloud 
Platform

FIGURE 11. Smart city - mobile CPS based crowdsensing application.
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Mobile	  Big	  Data

• Mobile	  sensing	  data	  from	  smartphones	  
– GPS,	  gyroscope,	  magnetometer,	  accelerometer,	  camera, 

microphone,	  …	  
– Full	  connected	  via	  4G	  networks	  

• Mobile	  social	  media	  data	  	  
– Facebook	  users	  share	  nearly	  2.5	  million	  pieces	  per	  min	  
– Twitter	  users	  tweet	  nearly	  300,000	  times	  per	  min	  
– Instagram	  users	  post	  nearly	  220,000	  new	  photos	  per	  min



Mobile	  Big	  Data

• Mobile	  sensing	  data	  from	  smartphones	  
– GPS,	  gyroscope,	  magnetometer,	  accelerometer,	  camera, 

microphone,	  …	  
– Full	  connected	  via	  4G	  networks	  

• Mobile	  social	  media	  data	  	  
– Facebook	  users	  share	  nearly	  2.5	  million	  pieces	  per	  min	  
– Twitter	  users	  tweet	  nearly	  300,000	  times	  per	  min	  
– Instagram	  users	  post	  nearly	  220,000	  new	  photos	  per	  min

Volume,	  Velocity,	  Variety!
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Mobile	  CrowdSensing	  based	  CPS
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Smart	  Phone	  Sensing
• Localization	  and	  speed	  estimation	  via	  sensing	  
landmarks	  and	  driving	  conditions	  
– self-‐learning	  trajectory	  estimation	  based	  on	  driving	  conditions	  
– fine	  calibration	  via	  landmarks	  (e.g.	  bridges,	  traffic	  lights,	  uphill)	  and	  

driving	  status	  (e.g.	  turns,	  stops)
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Figure 3: Patterns of sensor data collected in di↵erent road infrastructures when driving: (a) car
stopping and crossing a tra�c light; (b), (c), and (d) car turning 90o; and (e) car crossing a bridge.
continuos sensing from internal sensors (accelerometer, gyroscope and magnetometer), we can provide
robust, accurate and finegrained detection in both cases.

(i) Transportation mode detection: we will leverage the embedded accelerometer of the smartphone
to estimate the gravity component of the measurements, then design new features, extracted from the
horizontal accelerometer representation, that are capable to capturing the patterns and characteris-
tics of di↵erent transportation modes. Using classical machine learning algorithms we will train the
detection method based on these extracted features.

(ii) Driver detection: we propose to recognize micro-movements by fusing multiple evidences col-
lected from inertial sensors in smartphones, e.g., detecting whether a user is entering a vehicle or not,
inferring which side of the vehicle he/she is entering, determining whether a user is sitting in front or
rear seats. Precisely, we collect sensory data when users are performing various activities and observe
some unique patterns by converting the signal to frequency domain using DCT and wavelet to deter-
mine the user’s behavior. For instance, in order to infer the side from which a user enters a vehicle, as
well as the position of the seat he/she is sitting, we exploit the unique patterns in both acceleration
and magnetic fields observed from both the respective actions and the ambient environment, and fi-
nally make cognitive decision based on machine learning techniques. Figure 4 shows some preliminary
results [59] on the observation of rotation pattern from gyroscope sensor when a user enters the driver
side or passenger side. Similarly, to determine where the user is sitting in the car, i.e., at a front seat
or a back seat, we will rely on two separate signals: the influence on the magnetic field from starting
engine (which is more obvious for the front half of the vehicle) and the distinguishable patterns on the
acceleration between front and back seats when vehicle is crossing a bump or pothole.

(3) Tra�c queues and coverage monitoring via passively tracking smartphones: One of the
challenges faced by crowdsensing system for large-scale cyber physical systems is how to guarantee the
temporal and spatial coverage in a large region (in our case an urban environment). Luckily, a recent
study [60] has preformed a systematic study of the coverage and scaling properties of place-centric
crowdsensing and shows promising results that crowdsensing can provide relatively high coverage levels
especially given the city’s large size. In this project, we will also develop selection algorithms to
guarantee certain level of coverage for the tra�c system from the proposed crowdsensing applications.
We did some related works [61,62]. In addition, we will also implement a complemental component to
aid the tra�c monitoring at important places in the city by deploying a certain amount of WiFi access
points. By using techniques from [63], we will be able to passively track smartphones based on the
periodically WiFi messages from these smartphones. By doing so, the coverage of the proposed system
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Figure 4: Side detection: the observation of rotation patterns from gyroscope sensor.
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continuos sensing from internal sensors (accelerometer, gyroscope and magnetometer), we can provide
robust, accurate and finegrained detection in both cases.

(i) Transportation mode detection: we will leverage the embedded accelerometer of the smartphone
to estimate the gravity component of the measurements, then design new features, extracted from the
horizontal accelerometer representation, that are capable to capturing the patterns and characteris-
tics of di↵erent transportation modes. Using classical machine learning algorithms we will train the
detection method based on these extracted features.

(ii) Driver detection: we propose to recognize micro-movements by fusing multiple evidences col-
lected from inertial sensors in smartphones, e.g., detecting whether a user is entering a vehicle or not,
inferring which side of the vehicle he/she is entering, determining whether a user is sitting in front or
rear seats. Precisely, we collect sensory data when users are performing various activities and observe
some unique patterns by converting the signal to frequency domain using DCT and wavelet to deter-
mine the user’s behavior. For instance, in order to infer the side from which a user enters a vehicle, as
well as the position of the seat he/she is sitting, we exploit the unique patterns in both acceleration
and magnetic fields observed from both the respective actions and the ambient environment, and fi-
nally make cognitive decision based on machine learning techniques. Figure 4 shows some preliminary
results [59] on the observation of rotation pattern from gyroscope sensor when a user enters the driver
side or passenger side. Similarly, to determine where the user is sitting in the car, i.e., at a front seat
or a back seat, we will rely on two separate signals: the influence on the magnetic field from starting
engine (which is more obvious for the front half of the vehicle) and the distinguishable patterns on the
acceleration between front and back seats when vehicle is crossing a bump or pothole.

(3) Tra�c queues and coverage monitoring via passively tracking smartphones: One of the
challenges faced by crowdsensing system for large-scale cyber physical systems is how to guarantee the
temporal and spatial coverage in a large region (in our case an urban environment). Luckily, a recent
study [60] has preformed a systematic study of the coverage and scaling properties of place-centric
crowdsensing and shows promising results that crowdsensing can provide relatively high coverage levels
especially given the city’s large size. In this project, we will also develop selection algorithms to
guarantee certain level of coverage for the tra�c system from the proposed crowdsensing applications.
We did some related works [61,62]. In addition, we will also implement a complemental component to
aid the tra�c monitoring at important places in the city by deploying a certain amount of WiFi access
points. By using techniques from [63], we will be able to passively track smartphones based on the
periodically WiFi messages from these smartphones. By doing so, the coverage of the proposed system
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Figure 4: Side detection: the observation of rotation patterns from gyroscope sensor.
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2.1.2 Proposed Approach and Research Plan

Although GPS devices (including smartphones) can obtain real time location and speed of a vehicle,
they often su↵er from the urban canyon environment [58], which would cause low availability and
accuracy. Besides, the low update rate of GPS is not able to keep up with the frequent change of the
vehicle direction and speed in urban driving environments. Therefore, in this proposal, we propose
to use smartphone sensors to enhance the tra�c information extraction. Particularly, we will build
a crowdsensing app which accurately measures the location, speed, direction, transportation mode of
mobile users by leveraging the sensors within smartphones. In addition, a few WiFi access points will
be deployed at certain locations for tracking passing by smartphones.

(1) Localization and speed estimation via sensing landmarks and driving conditions: To
obtain the location and speed of a vehicle in urban environments is not a easy task. Problems caused by
weak/none GPS signal in cities often lead to poor performances of traditional localization methods. For
instance, we conducted preliminary experiments in Chicago’s downtown, to evaluate the performance
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(b) segments with poor GPS

Figure 2: Localization accuracy of GPS in a down-
town area of Chicago.

of GPS positioning. We observe that the GPS sig-
nals are very weak and unstable in some roads due
to highrises, or even blocked completely in some
complicated road structures, such as tunnels and
underground. In addition, the largest location er-
ror we collected is more than 100m on the ground,
and nearly 400m in the underground segments.
Figure 2 shows the proportion of localization er-
rors and the length of those segments with poor
GPS signals. Therefore, we propose to leverage
embedded inertial sensors in smartphones (e.g.,
accelerometer, gyroscope, magnetometer) to sense
natural driving conditions and patterns so that
both location and speed estimation can be improved. Even though, exploiting the data collected from
these inertial sensors has been used for a number of di↵erent transportation applications, providing
realtime localization and speed estimation of moving cars in urban environments is far more challeng-
ing as such activity does not have a cyclic pattern in sensory data. To address this challenge, we will
propose the following techniques:

(i) Self-learning trajectory estimation based on driving conditions: During the dead reckoning pro-
cess for calculating the current position of a vehicle, we propose a dynamic trajectory model to estimate
the driving speed and velocity based on current road condition, so that the impact of inherent noise
and accumulated error could be reduced to a large extent. The parameters in the trajectory model are
self-learned via regression model using the latest driving data and updated dynamically to match the
current driving status.

(ii) Fine calibration via landmarks and driving statuts: We plan to design a calibration strategy
based on di↵erent landmarks, such as road infrastructures (e.g., bridge, tra�c lights, uphill, and down-
hill) and driving status (e.g., turns, stops), which are inferred from the sensory data. Our extensive
evaluations indicate that leveraging inertial sensors could accurately identify the special road infras-
tructures using either fingerprint based approaches or pattern-matching techniques. Figure 3 shows
some example patterns of di↵erent driving status in sensory data during our preliminary experiments.

Our preliminary results show that these techniques can significantly improve the accuracy of local-
ization and speed estimation. For example, a simple test in the major blocks of Chicago downtown
indicates: (1) the mean localization error is around 11.65m; (2) the proportion of segments with average
localization error < 20m is increased from  50% (by purely using GPS) to � 90%.

(2) Transportation mode and driver detection via internal sensors: Accurately estimating
the speed and location of each smartphone is not enough for tra�c control, since many people may
share the same car or be on a bus or train. Therefore, detecting the transportation mode of each user
and/or whether the user is a driver of a car is also important but challenging tasks. Fortunately, with
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(i) Self-learning trajectory estimation based on driving conditions: During the dead reckoning pro-
cess for calculating the current position of a vehicle, we propose a dynamic trajectory model to estimate
the driving speed and velocity based on current road condition, so that the impact of inherent noise
and accumulated error could be reduced to a large extent. The parameters in the trajectory model are
self-learned via regression model using the latest driving data and updated dynamically to match the
current driving status.
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hill) and driving status (e.g., turns, stops), which are inferred from the sensory data. Our extensive
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indicates: (1) the mean localization error is around 11.65m; (2) the proportion of segments with average
localization error < 20m is increased from  50% (by purely using GPS) to � 90%.

(2) Transportation mode and driver detection via internal sensors: Accurately estimating
the speed and location of each smartphone is not enough for tra�c control, since many people may
share the same car or be on a bus or train. Therefore, detecting the transportation mode of each user
and/or whether the user is a driver of a car is also important but challenging tasks. Fortunately, with
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Figure 3: Patterns of sensor data collected in di↵erent road infrastructures when driving: (a) car
stopping and crossing a tra�c light; (b), (c), and (d) car turning 90o; and (e) car crossing a bridge.
continuos sensing from internal sensors (accelerometer, gyroscope and magnetometer), we can provide
robust, accurate and finegrained detection in both cases.

(i) Transportation mode detection: we will leverage the embedded accelerometer of the smartphone
to estimate the gravity component of the measurements, then design new features, extracted from the
horizontal accelerometer representation, that are capable to capturing the patterns and characteris-
tics of di↵erent transportation modes. Using classical machine learning algorithms we will train the
detection method based on these extracted features.

(ii) Driver detection: we propose to recognize micro-movements by fusing multiple evidences col-
lected from inertial sensors in smartphones, e.g., detecting whether a user is entering a vehicle or not,
inferring which side of the vehicle he/she is entering, determining whether a user is sitting in front or
rear seats. Precisely, we collect sensory data when users are performing various activities and observe
some unique patterns by converting the signal to frequency domain using DCT and wavelet to deter-
mine the user’s behavior. For instance, in order to infer the side from which a user enters a vehicle, as
well as the position of the seat he/she is sitting, we exploit the unique patterns in both acceleration
and magnetic fields observed from both the respective actions and the ambient environment, and fi-
nally make cognitive decision based on machine learning techniques. Figure 4 shows some preliminary
results [59] on the observation of rotation pattern from gyroscope sensor when a user enters the driver
side or passenger side. Similarly, to determine where the user is sitting in the car, i.e., at a front seat
or a back seat, we will rely on two separate signals: the influence on the magnetic field from starting
engine (which is more obvious for the front half of the vehicle) and the distinguishable patterns on the
acceleration between front and back seats when vehicle is crossing a bump or pothole.

(3) Tra�c queues and coverage monitoring via passively tracking smartphones: One of the
challenges faced by crowdsensing system for large-scale cyber physical systems is how to guarantee the
temporal and spatial coverage in a large region (in our case an urban environment). Luckily, a recent
study [60] has preformed a systematic study of the coverage and scaling properties of place-centric
crowdsensing and shows promising results that crowdsensing can provide relatively high coverage levels
especially given the city’s large size. In this project, we will also develop selection algorithms to
guarantee certain level of coverage for the tra�c system from the proposed crowdsensing applications.
We did some related works [61,62]. In addition, we will also implement a complemental component to
aid the tra�c monitoring at important places in the city by deploying a certain amount of WiFi access
points. By using techniques from [63], we will be able to passively track smartphones based on the
periodically WiFi messages from these smartphones. By doing so, the coverage of the proposed system
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Figure 4: Side detection: the observation of rotation patterns from gyroscope sensor.
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Smart	  Phone	  Sensing
• Transportation	  mode	  and	  driver	  detection	  via	  internal	  
sensors	  
– transportation	  mode	  detection	  via	  accelerometer	  
– driver	  detection	  by	  fusing	  multiple	  evidences	  from	  inertial	  sensors	  

!
!
!
!
!
• Traffic	  queues	  and	  coverage	  monitoring	  via	  passively	  
tracking	  smartphones	  
– passively	  track	  smartphones	  via	  periodically	  WiFi	  messages	  and	  

estimate	  the	  length	  of	  queues	  
– participant	  selection	  algorithms	  to	  guarantee	  coverage
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Figure 3: Patterns of sensor data collected in di↵erent road infrastructures when driving: (a) car
stopping and crossing a tra�c light; (b), (c), and (d) car turning 90o; and (e) car crossing a bridge.
continuos sensing from internal sensors (accelerometer, gyroscope and magnetometer), we can provide
robust, accurate and finegrained detection in both cases.

(i) Transportation mode detection: we will leverage the embedded accelerometer of the smartphone
to estimate the gravity component of the measurements, then design new features, extracted from the
horizontal accelerometer representation, that are capable to capturing the patterns and characteris-
tics of di↵erent transportation modes. Using classical machine learning algorithms we will train the
detection method based on these extracted features.

(ii) Driver detection: we propose to recognize micro-movements by fusing multiple evidences col-
lected from inertial sensors in smartphones, e.g., detecting whether a user is entering a vehicle or not,
inferring which side of the vehicle he/she is entering, determining whether a user is sitting in front or
rear seats. Precisely, we collect sensory data when users are performing various activities and observe
some unique patterns by converting the signal to frequency domain using DCT and wavelet to deter-
mine the user’s behavior. For instance, in order to infer the side from which a user enters a vehicle, as
well as the position of the seat he/she is sitting, we exploit the unique patterns in both acceleration
and magnetic fields observed from both the respective actions and the ambient environment, and fi-
nally make cognitive decision based on machine learning techniques. Figure 4 shows some preliminary
results [59] on the observation of rotation pattern from gyroscope sensor when a user enters the driver
side or passenger side. Similarly, to determine where the user is sitting in the car, i.e., at a front seat
or a back seat, we will rely on two separate signals: the influence on the magnetic field from starting
engine (which is more obvious for the front half of the vehicle) and the distinguishable patterns on the
acceleration between front and back seats when vehicle is crossing a bump or pothole.

(3) Tra�c queues and coverage monitoring via passively tracking smartphones: One of the
challenges faced by crowdsensing system for large-scale cyber physical systems is how to guarantee the
temporal and spatial coverage in a large region (in our case an urban environment). Luckily, a recent
study [60] has preformed a systematic study of the coverage and scaling properties of place-centric
crowdsensing and shows promising results that crowdsensing can provide relatively high coverage levels
especially given the city’s large size. In this project, we will also develop selection algorithms to
guarantee certain level of coverage for the tra�c system from the proposed crowdsensing applications.
We did some related works [61,62]. In addition, we will also implement a complemental component to
aid the tra�c monitoring at important places in the city by deploying a certain amount of WiFi access
points. By using techniques from [63], we will be able to passively track smartphones based on the
periodically WiFi messages from these smartphones. By doing so, the coverage of the proposed system
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Figure 4: Side detection: the observation of rotation patterns from gyroscope sensor.
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continuos sensing from internal sensors (accelerometer, gyroscope and magnetometer), we can provide
robust, accurate and finegrained detection in both cases.

(i) Transportation mode detection: we will leverage the embedded accelerometer of the smartphone
to estimate the gravity component of the measurements, then design new features, extracted from the
horizontal accelerometer representation, that are capable to capturing the patterns and characteris-
tics of di↵erent transportation modes. Using classical machine learning algorithms we will train the
detection method based on these extracted features.

(ii) Driver detection: we propose to recognize micro-movements by fusing multiple evidences col-
lected from inertial sensors in smartphones, e.g., detecting whether a user is entering a vehicle or not,
inferring which side of the vehicle he/she is entering, determining whether a user is sitting in front or
rear seats. Precisely, we collect sensory data when users are performing various activities and observe
some unique patterns by converting the signal to frequency domain using DCT and wavelet to deter-
mine the user’s behavior. For instance, in order to infer the side from which a user enters a vehicle, as
well as the position of the seat he/she is sitting, we exploit the unique patterns in both acceleration
and magnetic fields observed from both the respective actions and the ambient environment, and fi-
nally make cognitive decision based on machine learning techniques. Figure 4 shows some preliminary
results [59] on the observation of rotation pattern from gyroscope sensor when a user enters the driver
side or passenger side. Similarly, to determine where the user is sitting in the car, i.e., at a front seat
or a back seat, we will rely on two separate signals: the influence on the magnetic field from starting
engine (which is more obvious for the front half of the vehicle) and the distinguishable patterns on the
acceleration between front and back seats when vehicle is crossing a bump or pothole.

(3) Tra�c queues and coverage monitoring via passively tracking smartphones: One of the
challenges faced by crowdsensing system for large-scale cyber physical systems is how to guarantee the
temporal and spatial coverage in a large region (in our case an urban environment). Luckily, a recent
study [60] has preformed a systematic study of the coverage and scaling properties of place-centric
crowdsensing and shows promising results that crowdsensing can provide relatively high coverage levels
especially given the city’s large size. In this project, we will also develop selection algorithms to
guarantee certain level of coverage for the tra�c system from the proposed crowdsensing applications.
We did some related works [61,62]. In addition, we will also implement a complemental component to
aid the tra�c monitoring at important places in the city by deploying a certain amount of WiFi access
points. By using techniques from [63], we will be able to passively track smartphones based on the
periodically WiFi messages from these smartphones. By doing so, the coverage of the proposed system
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Figure 4: Side detection: the observation of rotation patterns from gyroscope sensor.
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Mobile	  Social	  Media	  Mining
• Content	  filtering	  for	  traffic-‐related	  incidents	  

– extract	  relevant	  content	  from	  public	  noisy	  media	  data	  via	  transfer	  
learning	  and	  classification	  techniques	  

• Geocoding	  social	  media	  messages	  
– estimate	  location	  of	  social	  media	  messages	  via	  extraction	  of	  fuzzy	  

location	  from	  user	  profile,	  location	  information	  from	  messages	  
themselves,	  and	  location	  propagation	  based	  on	  social	  ties	  

• Inferring	  and	  localizing	  traffic	  events	  
– model	  all	  social	  messages	  and	   

traffic-‐related	  events	  with	  a	   
generative	  process,	  and	  use	  Gibbs 
sampling	  and	  Variational	  Inference 
techniques	  to	  estimate	  the	  model	  

– event,	  time,	  location,	  probability



Chalenges	  in	  Traffic	  Event	  Mining
• Language	  ambiguity	  in	  mobile	  social	  media	  

– “congestion”	  or	  “slow”	  may	  be	  not	  real	  

• Location	  ambiguity	  in	  mobile	  social	  media	  
– “College	  Ave.	  traffic	  is	  so	  slow	  today”	  

• Event	  co-‐occurence	  
– congestions	  may	  happen	  together	  with	  accidents	  

• Temporal	  and	  geographical	    
correlations	  among	  events	  
– an	  accident	  at	  an	  intersection	  may 

lead	  to	  consequent	  congestions	  on	   
many	  connected	  roads
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Smart	  Traffic	  Control
• Real-‐time	  adaptive	  control	  with	  crowd	  sensing	  data	  	  

– can	  respond	  to	  dynamic	  and	  stochastic	  demand	  

• Proposed	  Ideas	  for	  real-‐time	  adaptive	  control:	  
– can	  be	  formulated	  as	  nonlinear	  mixed	  integer	  models	  
– take	  the	  outputs	  of	  crowd	  sensing	  data	  (traffic	  information	  and	  events)	  

into	  the	  model	  
– account	  for	  the	  inherent	  stochasticity	  involved	  with	  crowdsensing	  data	  
– account	  for	  the	  traffic	  flow	  phenomena	  such	  as	  queue	  formation	  and	  

discharge,	  congestion	  build-‐up	  and	  dissipation,	  traffic	  holding,	  the	  well-‐
known	  traffic	  first-‐in,	  first-‐out	  (FIFO)	  requirement	  

– tested	  and	  validated	  in	  the	  simulated	  environments	  



Outline

• Introduction	  
– Urban	  Traffic	  Control	  and	  Traffic	  CPS	  
– Mobile	  Crowd	  Sensing	  and	  Mobile	  Big	  Data	  

• Mobile	  Crowd	  Sensing	  based	  CPS	  
– Overall	  System	  Design	  
– Smartphone	  Sensing	  
– Mobile	  Social	  Media	  Mining	  
– Traffic	  Control	  

• Challenges	  of	  MCS	  based	  CPS	  
• Conclusion



Challenges	  of	  MCS	  based	  CPS
• Data	  quality,	  redundancy,	  and	  inconsistency	  

– sensing	  data	  is	  noisy	  and	  has	  various	  quality	  
– large	  number	  of	  participants	  bring	  redundancy	  and	  inconsistency	  

• Heterogeneous,	  cross-‐space	  big	  data	  mining	  
– mobile	  data	  from	  both	  smartphone	  sensors	  and	  mobile	  social	  medias	  
– how	  to	  effectively	  mining	  both	  big	  data	  and	  associate	  them?	  

• Security,	  privacy,	  incentive,	  and	  energy	  issues	  
– traffic	  information	  may	  be	  sensitive	  to	  individuals	  
– anonymous	  participants	  may	  send	  incorrect	  or	  fake	  data	  
– incentive	  mechanism	  is	  needed	  to	  stimulate	  participations	  
– minimize	  the	  energy	  consumption	  	  



Conclusion

• New	  sensing	  paradigm,	  mobile	  crowd	  sensing,	  to	  
capture	  complex	  traffic	  dynamics	  in	  urban	  environment	  

• Incorporate	  smartphone	  sensing	  and	  social	  media	  
mining	  into	  a	  large-‐scale	  transportation	  CPS	  for	  smart	  
traffic	  control	  	  

• Shed	  important	  light	  on	  the	  methodology	  to	  design	  a	  
general	  MCS	  based	  CPS	  
– how	  to	  handle	  massive	  and	  noisy	  sensed	  data	  from	  crowd	  
– how	  to	  motivate	  users	  to	  contribute	  data	  
– how	  to	  leverage	  the	  power	  of	  crowd	  
– how	  to	  play	  tradeoff	  among	  sensing	  quality,	    

efficiency,	  energy,	  security,	  and	  privacy
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