

Mobile Big Data Meets Cyber-Physical System: Mobile Crowdsensing based Cyber-Physical System for Smart Urban Traffic Control

Yu Wang, Yong Ge, Weichao Wang, Wei Fan University of North Carolina at Charlotte

April 13, 2015 @ Workshop for Big Data Analytics in CPS: Enabling the Move From IoT to Real-Time Control

Outline

Introduction

- Urban Traffic Control and Traffic CPS
- Mobile Crowd Sensing and Mobile Big Data

Mobile Crowd Sensing based CPS

- Overall System Design
- Smartphone Sensing
- Mobile Social Media Mining
- Traffic Control
- Challenges of MCS based CPS
- Conclusion

Traffic Problems

• Traffic congestion in US remains stable and severe

- Travel Time Index remained steady at 1.18
- Fuel wasted in congested traffic reached 2.9 billion gallons
- Total financial cost of congestion is around \$121 billion
- * Urban Mobility Report from Texas A&M Transportation Institute

• One effective way to solve this global problem is smart traffic control

Traffic Control and CPS

- Current traffic control solutions
 - Pre-timed Control (offline with deterministic demand)
 - Semi- or Fully-actuated Control (vary in response to current demand, but with pre-defined, fixed parameters)
 - Real-time Adaptive Control (respond to dynamic and stochastic demand)
- Real-time traffic control rely on efficient monitoring
 - Monitoring/sensing + Control = CPS
 - Monitoring/sensing in dynamic urban environment is challenging

College of Computing and Informatics

Mobile Crowd Sensing — "Power of the crowd"

- Individuals with sensing and computing devices collectively share data and extract information to measure and map phenomena of common interest
- Widely used in many applications human as sensors

College of Computing and Informatics

Mobile Big Data

- Mobile sensing data from smartphones
 - GPS, gyroscope, magnetometer, accelerometer, camera, microphone, ...
 - Full connected via 4G networks
- Mobile social media data
 - Facebook users share nearly 2.5 million pieces per min
 - Twitter users tweet nearly 300,000 times per min
 - Instagram users post nearly 220,000 new photos per min

Mobile Big Data

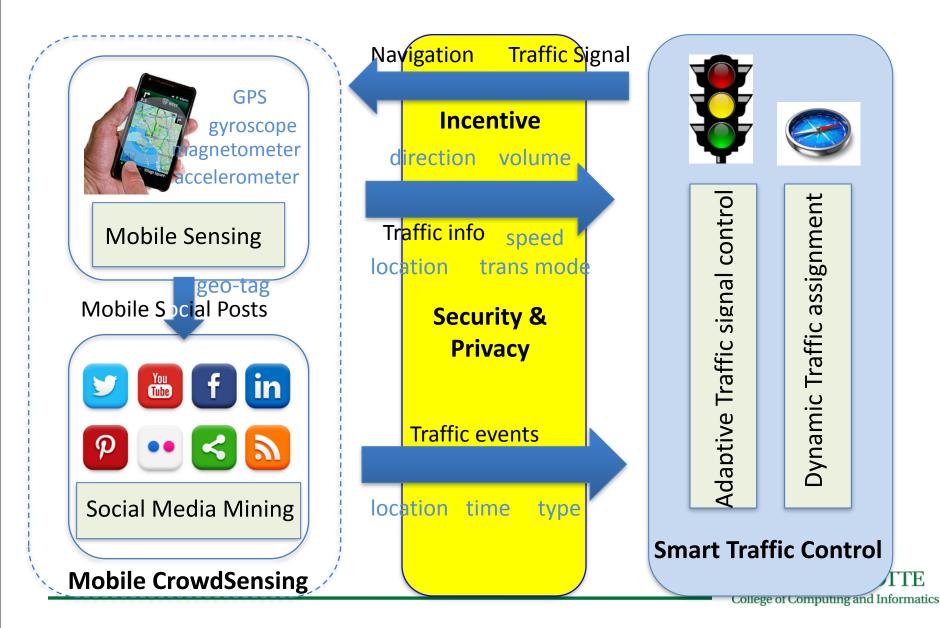
- Mobile sensing data from smartphones
 - GPS, gyroscope, magnetometer, accelerometer, camera, microphone, ...
 - Full connected via 4G networks
- Mobile social media data
 - Facebook users share nearly 2.5 million pieces per min
 - Twitter users tweet nearly 300,000 times per min
 - Instagram users post nearly 220,000 new photos per min

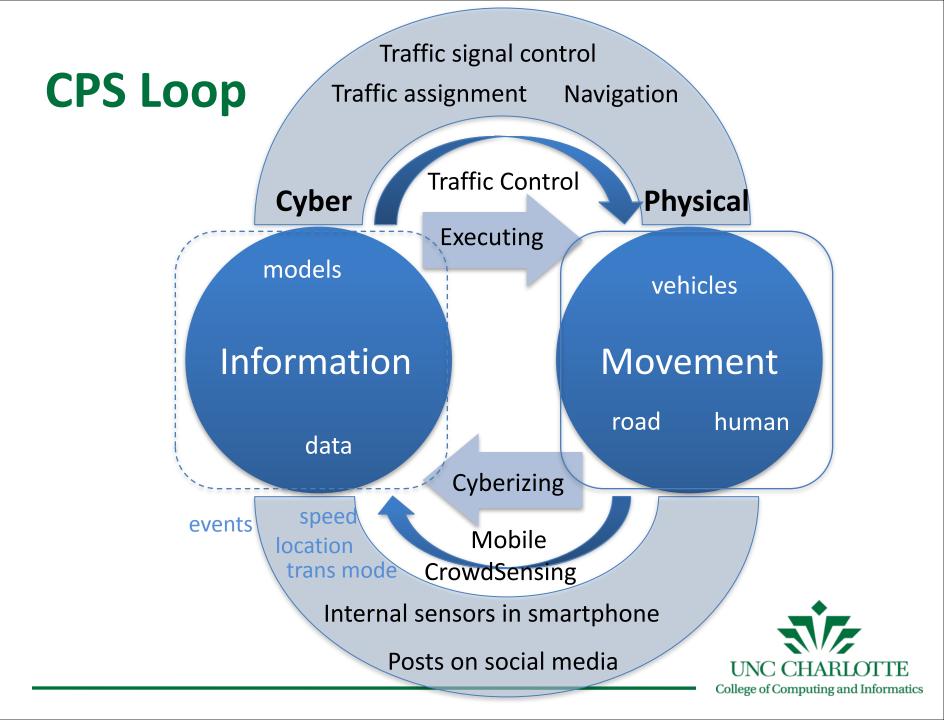
Volume, Velocity, Variety!

Outline

- Introduction
 - Urban Traffic Control and Traffic CPS
 - Mobile CrowdSensing and Mobile Big Data
- Mobile CrowdSensing based CPS
 - Overall System Design
 - Smartphone Sensing
 - Mobile Social Media Mining
 - Traffic Control
- Challenges of MCS based CPS
- Conclusion

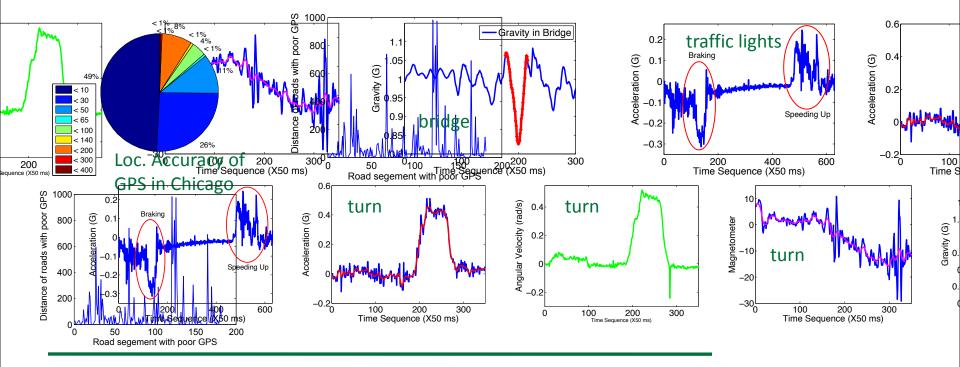
Mobile CrowdSensing based CPS





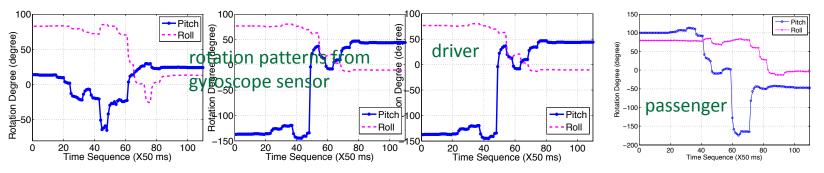
Smart Phone Sensing

- Localization and speed estimation via sensing landmarks and driving conditions
 - self-learning trajectory estimation based on driving conditions
 - fine calibration via landmarks (e.g. bridges, traffic lights, uphill) and driving status (e.g. turns, stops)



Smart Phone Sensing

- Transportation mode and driver detection via internal sensors
 - transportation mode detection via accelerometer
 - driver detection by fusing multiple evidences from inertial sensors



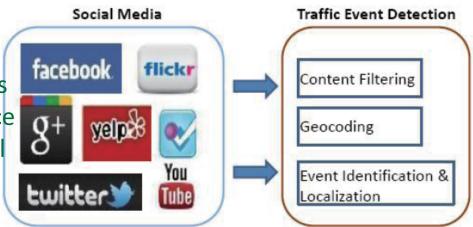
- Traffic queues and coverage monitoring via passively tracking smartphones
 - passively track smartphones via periodically WiFi messages and estimate the length of queues
 - participant selection algorithms to guarantee coverage

Mobile Social Media Mining

- Content filtering for traffic-related incidents
 - extract relevant content from public noisy media data via transfer learning and classification techniques
- Geocoding social media messages
 - estimate location of social media messages via extraction of fuzzy location from user profile, location information from messages themselves, and location propagation based on social ties

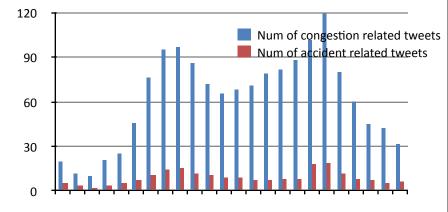
Inferring and localizing traffic events

- model all social messages and traffic-related events with a generative process, and use Gibbs sampling and Variational Inference techniques to estimate the model
- event, time, location, probability



Chalenges in Traffic Event Mining

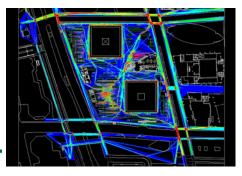
- Language ambiguity in mobile social media
 - "congestion" or "slow" may be not real
- Location ambiguity in mobile social media
 - "College Ave. traffic is so slow today"
- Event co-occurence
 - congestions may happen together with accidents
- Temporal and geographical correlations among events
 - an accident at an intersection may lead to consequent congestions on many connected roads



Hourly average frequency of tweets from 8 weeks tweets @ Washington D.C

Smart Traffic Control

- Real-time adaptive control with crowd sensing data
 - can respond to dynamic and stochastic demand
- Proposed Ideas for real-time adaptive control:
 - can be formulated as nonlinear mixed integer models
 - take the outputs of crowd sensing data (traffic information and events) into the model
 - account for the inherent stochasticity involved with crowdsensing data
 - account for the traffic flow phenomena such as queue formation and discharge, congestion build-up and dissipation, traffic holding, the wellknown traffic first-in, first-out (FIFO) requirement
 - tested and validated in the simulated environments



Outline

- Introduction
 - Urban Traffic Control and Traffic CPS
 - Mobile Crowd Sensing and Mobile Big Data
- Mobile Crowd Sensing based CPS
 - Overall System Design
 - Smartphone Sensing
 - Mobile Social Media Mining
 - Traffic Control
- Challenges of MCS based CPS
- Conclusion

Challenges of MCS based CPS

- Data quality, redundancy, and inconsistency
 - sensing data is noisy and has various quality
 - large number of participants bring redundancy and inconsistency
- Heterogeneous, cross-space big data mining
 - mobile data from both smartphone sensors and mobile social medias
 - how to effectively mining both big data and associate them?
- Security, privacy, incentive, and energy issues
 - traffic information may be sensitive to individuals
 - anonymous participants may send incorrect or fake data
 - incentive mechanism is needed to stimulate participations
 - minimize the energy consumption

College of Computing and Informatics

Conclusion

- New sensing paradigm, *mobile crowd sensing*, to capture complex traffic dynamics in urban environment
- Incorporate *smartphone sensing* and *social media mining* into a large-scale transportation CPS for *smart traffic control*
- Shed important light on the methodology to design a general MCS based CPS
 - how to handle massive and noisy sensed data from crowd
 - how to motivate users to contribute data
 - how to leverage the power of crowd
 - how to play tradeoff among sensing quality, efficiency, energy, security, and privacy

Thank You!

Team Members:

 Yu Wang (Computer Science: Smart Sensing, Networking)
Yong Ge (Computer Science: Social Media Mining, Big Data)
Weichao Wang (Software Information Systems: Security, Networking)
Wei Fan (Civil and Environmental Engineering: Traffic Engineering, Transportation Planning, Transportation Optimization)

Collaborators: Fan Li (Beijing Institute of Technology) Xufei Mao (Tsinghua university)

Contact: yu.wang@uncc.edu

