James Ferlez⁺, Rance Cleaveland[§] and Steve Marcus⁺

§Department of Computer Science & †Department of Electrical and Computer Engineering

CPS Program Information

- CPS Breakthrough: Compositional Modeling of Cyber-Physical Systems (NSF Grant: CNS-1446665)
- Pls: Rance Cleaveland and Steve Marcus

HML and Weak Bisimulation for GSTs

- Modal logic has long been used to study transition systems via bisimulation [3].
- Modal quantifiers express "possibility" or "necessity" in an "alternate world"
- For transition systems, "alternate world" = successor state
- Unlike 1st-order logic in that quantifiers are restricted (to successors).
- Can we study bisimulation for Cyber-Physical Systems (CPSs) using modal logic?

Synchronization Trees (STs)

Famously, Milner [5] devised synchronization trees for labeled transition systems: Definition:

A Synchronization Tree (ST) over a set of labels \mathcal{L} is an undirected, connected, acyclic graph with a specially identified root node, r.

- Bisimulation is a natural (observational) notion of equivalence between trees.
- Each vertex has a unique incoming edge: vertices may be identified with sub-trees!
- Operations on tree create new trees from old ones. For example:
 - Make a tree's root the **target** of a new edge;
 - **Identify** the root nodes of two trees.
- These operations make STs ideal models for the study of modal logics.

Hennessy-Milner Logic (HML) and STs

- Hennessy and Milner noticed a relationship between bisimulation and a simple modal logic that would become known as Hennessy-Milner Logic (HML). [3]
- Consider the following (inductively defined) modal logic ($\ell \in L$, the set of labels) :

 $\varphi := \top \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \langle \ell \rangle \varphi$

- **Notation:** let p and q be two STs. Then let
 - $p \rightleftharpoons q$ denote that p and q are bisimilar; and
- $p \approx_{HML} q$ denote that p and q satisfy the same HML formulas.

Theorem: [3]

For any two **image-finite STs** p and q, $p \nleftrightarrow q \Leftrightarrow p \approx_{\mathsf{HML}} q$.

(A ST is **image-finite** if each node has at most finitely many ℓ -successors for each label ℓ .) Similar theorems are called **Hennessy-Milner Theorems**.

Hennessy-Milner Classes of STs

Image finite STs are one class of STs for which there is a Hennessy-Milner theorem. There are other such classes, and this is made precise in the following definition: **Definition:** [2]

(Visser-Hollenberg Hennessy-Milner Property) Let h be a class of STs. h satisfies the VHHM property (or is a VHHM class) if:

For all $p, q \in \mathfrak{h}$ and all nodes p' and q' in p and q, respectively,

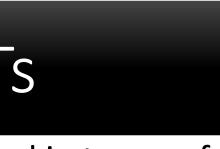
 $p' \stackrel{\text{def}}{=} q' \Leftrightarrow p' \approx q'. \bigstar$

VHHM classes are often called just **Hennessy-Milner Classes**; but sometimes **t** is enforced only on root nodes, and this is a different notion! [2] (see third column \rightarrow)

Maximal VHHM Classes of STs

- Maximal (in a set theoretic sense) VHHM classes can be characterized in terms of the Canonical Model for the smallest normal logic, K.
- \mathbf{C}^{Λ} the Canonical Model for a logic Λ is **the** Kripke structure defined so its states are maximally consistent sets of formulas; and its
- *transitions* respect the formulas **within a state** (modally saturated).

Modal Logic and Bisimulation for Generalized Synchronization Trees



Maximal VHHM Classes of STs (continued)

Theorem: [4]

For any state s in \mathbf{C}^{Λ} and any modal formula φ : $s \models \varphi \Leftrightarrow \varphi \in s$

 \mathbf{C}^{Λ} "maximally" satisfies the above property, but not uniquely!

Definition: [4]

A Kripke structure with the same states as \mathbf{C}^{Λ} is called **Henkin-like** (denoted \mathbf{HC}^{Λ}) if • its transitions are a subset of $\mathbf{C}^{\Lambda'}$ s; and

• $s \models \varphi \Leftrightarrow \varphi \in s$ for all states s and formulas φ .

Theorem: [4]

Let $BS(HC^K)$ be the Kripke structures that are bisimilar to a sub-model of HC^K . Then: • for every HC^{K} , $BS(HC^{K})$ is a maximal VHHM class; and • every maximal VHHM class \mathfrak{h} equals BS(**HC**^K) for some Henkin-like model **HC**^K.

Generalized Synchronization Trees (GSTs)

Idea: generalize STs to enable modeling of cyber-physical systems (CPSs) [1]. **Definition:** [1]

A tree is a partially ordered set (P, \preceq) with the following two properties: 1. There is a p_0 s.t. $p_0 \leq p$ for all $p \in P$; p_0 is the root of the tree. 2. For each $p \in P$, the set $[p_0, p] \triangleq \{p' \in P | p' \preceq p\}$ is *linearly ordered* by \preceq .

Definition: [1]

A Generalized Synchronization Tree (GST) [1] over a let of labels L is a tree (P, \preceq, p_0) along with a labeling function $\mathcal{L}: P \setminus \{p_0\} \to L$.

(Weak) Bisimulation for GSTs

Let $G_P = (P, p_0, \preceq_P, \mathcal{L}_P)$ and $G_Q = (Q, q_0, \preceq_Q, \mathcal{L}_Q)$ be GSTs. **Definition:** [1]

 G_P weakly simulates G_Q [1] if there is a relation $R \subseteq P \times Q$ s.t. $(p_0, q_0) \in R$ and • For any $(p,q) \in R$ and $q' \succeq q$ there is a $p' \succeq p$ s.t. $(p',q') \in R$, and there is an order-preserving bijection $\lambda : (p, p'] \to (q, q']$ s.t. $\forall r \in (p, p'].(r, \lambda(r)) \in R$.

Notions like this are common in the literature; compare also to strong bisimulation [1].

HML for GSTs

- Note the relationship between STs and HML: $\langle \ell \rangle$ mirrors the idea of an ℓ -transition!
- Generalizing HML is about generalizing $\langle \ell \rangle$ and the notion of an ℓ -transition!

Idea: "label" modalities with functions over an auxiliary totally ordered set (that thus specifies the logic):

Definition(s): [2]

- A domain of modalities is a totally ordered set $(\mathscr{I}, \preceq_{\mathscr{I}})$ and a set of labels, L.
- A modal execution is a map from a left-open subset of \mathscr{I} to L; denote the set of modal executions by $\mathcal{M}(\mathcal{I}, L)$.

(Left-open subsets are those that: **don't** contain a GLB and **do** contain a LUB.)

Generalized Hennessy-Milner Logic: Syntax

We define GHML in terms of *equivalence classes* of modal executions: **Definition:** [2]

 $E_1 : I_1 \to L$ and $E_2 : I_2 \to L$ in $\mathcal{M}(\mathscr{I}, L)$ are **order equivalent** if there is an order preserving bijection $\lambda: I_1 \to I_2$ such that for all $x \in I_1$ $E_1(x) = E_2(\lambda(x)).$

 $|\mathscr{M}(\mathscr{I},L)|$ denotes the set of all such equiv. classes; |E| the equiv. class of $E \in \mathscr{M}(\mathscr{I},L)$.

Definition: [2]

For a domain of mo	dalities	$\mathcal{S}\left(\mathscr{I},L ight)$, the set	et of GHML
$\varphi := \top \mid$	$\neg \varphi$	$ \varphi_1 \wedge \varphi_2$	$ \langle \langle E \rangle \rangle \varphi$

formulas $\Phi_{\mathsf{GHML}}(\mathscr{I}, L)$ is defined by: φ where $|E| \in |\mathcal{M}(\mathcal{I}, L)|$.

Definition: [2]

The satisfaction relation $\models \subseteq \mathscr{G}_{sub} \times \Phi_{GHML}(\mathscr{I}, L)$ is defined such that • $G \models \langle\!\langle |E| \rangle\!\rangle \varphi$ iff there exists a left-open $I \subseteq \mathscr{I}$ and an order-preserving bijection $\lambda: I
ightarrow (p_0, p]$ such that - $\mathcal{L} \circ \lambda \in |E|$ and $G|_p \models \varphi$.

Surrogate Kripke Structures for GSTs

Simple idea: think of \leq_P as a transition relation and re-label it using $|\mathscr{M}(\mathscr{I}, L)|$.

Definition: [2]

The surrogate Kripke structure of G is $\mathbf{G} = (P, \{R_{|E|}^G : |E| \in |\mathcal{M}(\mathscr{I}, L)|\}, V)$ where: • $p_1 \stackrel{|E|}{\rightarrow} p_2$ iff $p_1 \preceq_P p_2$ and $(p_1, p_2]$ is order equivalent to E; and

- V is the universal valuation.

 $G_{[0,1]} = ([0,1], \leq, 0, (0,1] \to \{\alpha\})$

Theorem: (weak bisimulation and bisimulation between surrogates) [2] $G_1 \stackrel{\leftrightarrow}{=}_w G_2 \Leftrightarrow p_0 \stackrel{\leftrightarrow}{=} q_0.$

Theorem: (GHML formulas in GSTs and HML formulas in STs) [2]

1. for all $\varphi \in \Phi_{\mathsf{GHML}}(\mathscr{I}, L)$,

 $G_1 \models \varphi \implies p_0 \models \varphi_{\langle \rangle}$

 $\varphi_{\langle \rangle}$: replace GHML diamond modality with identically labeled HML modality. $\phi_{\langle\langle \rangle\rangle}$: replace HML diamond modality with identically labeled GHML modality.

Maximal VHHM Classes of GSTs

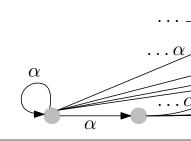
Use surrogate Kripke structures to define VHHM classes of GSTs: **Definition:** [2]

Say \mathfrak{h} is a VHHM class of GSTs if for any two sub-GSTs from \mathfrak{h} :

 $G_1|_p \stackrel{\leftrightarrow}{=}_w G_2|_q \iff G_1|_p \approx_{\mathsf{GHML}} G_2|_q.$

Theorem: (Surrogate Kripke structures and VHHM classes of GSTs) [2] If \mathfrak{h} is a VHHM class of GSTs, then the set of surrogate Kripke structures $\{\mathbf{G}: G \in \mathfrak{h}\}$ is a VHHM class of Kripke structures.

But there are certain additional constraints that can be enforced: "Weak density": $\langle\!\langle E_1; E_2 \rangle\!\rangle \varphi \to \langle\!\langle E_1 \rangle\!\rangle \langle\!\langle E_2 \rangle\!\rangle \varphi$ "Transitivity": $\langle\!\langle E_1 \rangle\!\rangle \langle\!\langle E_2 \rangle\!\rangle \varphi \to \langle\!\langle E_1; E_2 \rangle\!\rangle \varphi$



- 8412 of LNCS. Grenoble, France, 2014.
- arXiv:1709.00049.

- Bisimulation Perspective, CSLI Lecture Notes, pages 187–216.

The Institute for UNIVERSITY OF Research

GHML: Semantics

Let $G = (P, \preceq_P, p_0, \mathcal{L})$ be a GST, and $\mathscr{G}_{sub} := \{G|_p : p \in P\}$ be the set of sub-trees of G.

 $\mathbf{G}_{[\mathbf{0},\mathbf{1}]}$

2. for all $\phi \in \Phi_{\mathsf{HML}}(L)$,

 $p_0 \models \phi \implies G \models \phi_{\langle \langle \rangle \rangle}$

Not all GSTs (or Kripke Structures!) belong to a maximal VHHM class! [2]

References

J. Ferlez, R. Cleaveland, and S. I. Marcus. Generalized synchronization trees. In FOSSACS 2014, vol.

2. J. Ferlez, R. Cleaveland, and S. Marcus. *Bisimulation and Hennessy-Milner Logic for Generalized* Synchronization Trees. In Proceedings EXPRESS/SOS 2017; published in EPTCS, 255:35–50, 2017 and

Hennessy and Milner. Algebraic laws for nondeterminism and concurrency. Journal of the ACM. 1985 M. Hollenberg. Hennessy-Milner Classes and Process Algebra. In Modal Logic and Process Algebra: A

5. R. Milner. A Calculus of Communicating Systems. Number 92 in LNCS. 1980.