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Famously,	Milner	[5]	devised	synchronization	trees	for	labeled	transition	systems:

• Bisimulation	is	a	natural	(observational)	notion	of	equivalence	between	trees.

• Each	vertex	has	a	unique	incoming	edge:	vertices	may	be	identified	with	sub-trees!

• Operations	on	tree	create	new	trees	from	old	ones.	For	example:
• Make	a	tree’s	root	the	target of	a	new	edge;
• Identify the	root	nodes	of	two	trees.

• These	operations	make	STs	ideal	models	for	the	study	of	modal	logics.

Idea:	generalize	STs	to	enable	modeling	of	cyber-physical	systems	(CPSs)	[1].

Notions	like	this	are	common	in	the	literature;	compare	also	to	strong	bisimulation [1].

• Hennessy	and	Milner	noticed	a	relationship	between	bisimulation	and	a	simple	
modal	logic	that	would	become	known	as	Hennessy-Milner	Logic	(HML).	[3]

• Consider	the	following	(inductively	defined)	modal	logic																																													:

• Notation:	let	p	and	q	be	two	STs.	Then	let	
• denote	that	p	and	q	are	bisimilar;	and	
• denote	that	p	and	q	satisfy	the	same	HML	formulas.

• Similar	theorems	are	called	Hennessy-Milner	Theorems.

• Modal	logic	has	long	been	used	to	study	transition	systems	via	bisimulation	[3].

• Modal	quantifiers	express	”possibility”	or	”necessity”	in	an	“alternate	world”
• For	transition	systems,	“alternate	world”	=	successor	state
• Unlike	1st-order	logic	in	that	quantifiers	are	restricted	(to	successors).

• Can	we	study	bisimulation	for	Cyber-Physical	Systems	(CPSs)	using	modal	logic?

• “maximally”	satisfies	the	above	property,	but	not	uniquely!
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HML	and	Weak	Bisimulation	for	GSTs

Maximal	VHHM	Classes	of	STs	(continued)

Surrogate	Kripke	Structures	for	GSTs

Generalized	Synchronization	Trees	(GSTs)
Synchronization	Trees	(STs)

Definition:
Definition:	[1]

A Generalized Synchroniza on Tree (GST) [1] over a let of labels L is a tree (P,≼, p0)
along with a labeling func on L : P\{p0} → L.

Definition:	[1]

(Weak)	Bisimulation	for	GSTs

Definition:	[1]

Hennessy-Milner	Logic	(HML)	and	STs

References

ϕ := ⊤ | ¬ϕ | ϕ1 ∧ ϕ2 | ⟨ℓ⟩ϕ

Theorem:	[3]

(ℓ ∈ L, the set of labels)

p ↔ q

p ≈HML q

(A ST is image-finite if each node has at most finitely many ℓ-successors for each label ℓ.)

Hennessy-Milner	Classes	of	STs
• Image	finite	STs	are	one	class	of	STs	for	which	there	is	a	Hennessy-Milner	theorem.	

There	are	other	such	classes,	and	this	is	made	precise	in	the	following	definition:

VHHM	classes	are	often	called	just	Hennessy-Milner	Classes;	but	sometimes						is	
enforced	only	on	root	nodes,	and	this	is	a	different	notion! [2]	(see	third	column								)

Definition:	[2]

CΛ Λ

Theorem:	[4]
For any state s in CΛ and any modal formula ϕ: s |= ϕ ⇔ ϕ ∈ s

Definition:	[4]

Theorem:	[4]

For any two image-finite STs p and q, p ↔ q ⇔ p ≈HML q.

Let "a(HCK) be the Kripke structures that are bisimilar to a sub-model of HCK . Then:
• for every HCK , "a(HCK) is a maximal VHHM class; and
• every maximal VHHM class h equals "a(HCK) for some Henkin-like model HCK .

A tree is a par ally ordered set (P,≼) with the following two proper es:
1. There is a p0 s.t. p0 ≼ p for all p ∈ P ; p0 is the root of the tree.
2. For each p ∈ P , the set [p0, p] ! {p′ ∈ P |p′ ≼ p} is linearly ordered by≼.

HML	for	GSTs
• Note	the	relationship	between	STs	and	HML:	 mirrors	the	idea	of	an			-transition!

• Generalizing	HML	is	about	generalizing							and	the	notion	of	an			-transition!

Idea:	”label”	modalities	with	functions	over	an	auxiliary	totally	ordered	set	(that	thus	
specifies	the	logic):

(Left-open	subsets	are	those	that:	don’t contain	a	GLB	and	do contain	a	LUB.)

GP weakly simulatesGQ [1] if there is a rela onR ⊆ P ×Q s.t. (p0, q0) ∈ R and
• For any (p, q) ∈ R and q′ ≽ q there is a p′ ≽ p s.t. (p′, q′) ∈ R, and there is an

order-preserving bijec on λ : (p, p′] → (q, q′] s.t. ∀r ∈ (p, p′].(r,λ(r)) ∈ R.

Definition(s):	[2]

GHML:	Semantics

• A domain of modali es is a totally ordered set (I ,≼I ) and a set of labels, L.
• Amodal execu on is a map from a le -open subset of I to L; denote the set of

modal execu ons by M (I , L).

Definition:	[2]
The sa sfac on rela on |=⊆ Gsub × ΦGHML(I , L) is defined such that

• G |= ⟨⟨|E|⟩⟩ϕ iff there exists a le -open I ⊆ I and an order-preserving bijec on
λ : I → (p0, p] such that

– L ◦ λ ∈ |E| andG|p |= ϕ.

LetG = (P,≼P , p0,L) be a GST, and Gsub := {G|p : p ∈ P} be the set of sub-trees ofG.

Use	surrogate	Kripke	structures	to	define	VHHM	classes	of	GSTs:

But	there	are	certain	additional	constraints	that	can	be	enforced:

Not	all	GSTs	(or	Kripke	Structures!)	belong	to	a	maximal	VHHM	class!	[2]

Maximal	VHHM	Classes	of	GSTs

Simple idea: think of≼P as a transi on rela on and re-label it using |M (I , L)|.

The surrogate Kripke structure ofG is G = (P, {RG
|E| : |E| ∈ |M (I , L)|}, V ) where:

• p1
|E|→ p2 iff p1 ≼P p2 and (p1, p2] is order equivalent to E; and

• V is the universal valua on.

Definition:	[2]

G[0,1] = ([0, 1],≤, 0, (0, 1] → {α})

A Kripke structure with the same states as CΛ is called Henkin-like (denoted HCΛ) if
• its transi ons are a subset of CΛ’s; and
• s |= ϕ ⇔ ϕ ∈ s for all states s and formulas ϕ.

⟨ℓ⟩ ℓ

⟨ℓ⟩ ℓ

LetGP = (P, p0,≼P ,LP ) andGQ = (Q, q0,≼Q,LQ) be GSTs.

A Synchroniza on Tree (ST) over a set of labels L is an undirected, connected, acyclic
graph with a specially iden fied root node, r.

• Maximal (in	a	set	theoretic	sense)	VHHM	classes	can	be	characterized	in	terms	of	
the	Canonical	Model	for	the	smallest	normal	logic,	K.

• - the	Canonical	Model	for	a	logic					- is	the Kripke	structure	defined	so	its
• states are	maximally	consistent	sets	of	formulas;	and	its
• transitions respect	the	formulas	within	a	state	(modally	saturated).

Maximal	VHHM	Classes	of	STs

CΛ Λ

(Visser-Hollenberg Hennessy-Milner Property) Let h be a class of STs. h sa sfies the
VHHM property (or is a VHHM class) if:
For all p, q ∈ h and all nodes p′ and q′ in p and q, respec vely,

p′ ↔ q′ ⇔ p′ ≈ q′. • We	define	GHML	in	terms	of	equivalence	classes of	modal	executions:

Generalized	Hennessy-Milner	Logic:	Syntax

Definition:	[2]
E1 : I1 → L and E2 : I2 → L in M (I , L) are order equivalent if there is an order
preserving bijec on λ : I1 → I2 such that for all x ∈ I1

E1(x) = E2(λ(x)).

|M (I , L)| denotes the set of all such equiv. classes; |E| the equiv. class ofE ∈ M (I , L).

Definition:	[2]
For a domain ofmodali es (I , L), the set of GHML formulasΦGHML(I , L) is defined by:

ϕ := ⊤ | ¬ϕ | ϕ1 ∧ ϕ2 | ⟨⟨|E|⟩⟩ϕ where |E| ∈ |M (I , L)|.

Theorem:	(weak	bisimulation	and	bisimulation	between	surrogates)	[2]
G1

↔
w G2 ⇔ p0 ↔ q0.

Theorem:	(GHML	formulas	in	GSTs	and	HML	formulas	in	STs)	[2]

1. for all ϕ ∈ ΦGHML(I , L),

G1 |= ϕ =⇒ p0 |= ϕ⟨ ⟩

2. for all φ ∈ ΦHML(L),
p0 |= φ =⇒ G |= φ⟨⟨ ⟩⟩

1. for all ϕ ∈ ΦGHML(I , L),

G1 |= ϕ =⇒ p0 |= ϕ⟨ ⟩

2. for all φ ∈ ΦHML(L),

p0 |= φ =⇒ G |= φ⟨⟨ ⟩⟩

ϕ⟨ ⟩: replace GHML diamond modality with iden cally labeled HML modality.
φ⟨⟨ ⟩⟩: replace HML diamond modality with iden cally labeled GHML modality.

Definition:	[2]
Say h is a VHHM class of GSTs if for any two sub-GSTs from h:

G1|p ↔
w G2|q ⇔ G1|p ≈GHML G2|q.

Theorem:	(Surrogate	Kripke	structures	and	VHHM	classes	of	GSTs)	[2]
If h is a VHHM class of GSTs, then the set of surrogate Kripke structures {G : G ∈ h} is a
VHHM class of Kripke structures.

“Weak density”: ⟨⟨E1;E2 ⟩⟩ϕ → ⟨⟨E1 ⟩⟩⟨⟨E2 ⟩⟩ϕ “Transi vity”: ⟨⟨E1 ⟩⟩⟨⟨E2 ⟩⟩ϕ → ⟨⟨E1;E2 ⟩⟩ϕ
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