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Control in Automotive CPS @
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V Overview

= Hardware-in-the-loop simulation
= Virtual prototyping of time-triggered CPS

= Passivity-based design of adaptive cruise
controller

= Model-based control and integration: Adaptive
cruise controller and lane keeping controller
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V Overview

= Hardware-in-the-loop simulation
= Virtual prototyping of time-triggered CPS

= Passivity-based design of adaptive cruise
controller

= Model-based control and integration: Adaptive
cruise controller and lane keeping controller



Virtual Platform
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Network/Platform Layer @

= As the backbone of virtual prototyping of CPS, the network/platform layer
bridges the software layer and the physical layer.

= The behavior of this layer is captured by several models in SystemC:
A clock model for driving TT operations and synchronization
A processing element (PE) model in the form of RTOS model for TT computation
A network model compliant with the TTEthernet protocol for TT communication
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[Zhang et al. 2013] Modeling Time-Triggered Ethernet in SystemC/TLM , IESS 2013. 7



Model-Based Approach

= The first 4 steps corresponds to (D contro DES'E" (Matlab/Simulink)

Imports

[§1§

ESMoL design [Porter et al. 2010]. Model Perfo;:azce
. Structure Feedbacks
= From the designed ESMoL model ;.. i Language(ESMOL)
we can generate the executable O Design Model Aspects C Codes
co-simulation model: = e — : G;ﬂf—';mnc -~
{ Software "- { Han ware m
Takes C CO.de generated by RTW of Archltecture Deployment} \ Platforrn I AL Virtual Prototype
MATLAB/Simulink to realize control ( Behavior Timing Annotations
functionalities. Transformation .'/ “Software /:f;::;’rr:{\ [ Physical _'\,I
Uses UDM model navigation APIs to of Mode @ A e
traverse the ESMolL_Abstract model Detalls " Distrete Event Simulator :

Intermediate Language (ESMoL Abstract)
Semantic Model Layers

Uses Google Ctemplate to fill in the
Conf|gurat|0n templates ( Requuements {Cunstramts}
= Atemplate for PE’s task set: each PE’s  Instancesand )

0

task set is generated as a SystemC | Parameters | 5.__”'°de‘ Relaions ) eation
module in which tasks are thread — e y I\io ol
processes.

= A template for sc_main() function in Syntax mﬂé'ﬁase
which different parts of different nodes Generation Times
are instantiated and connented. ( Schedulability Analysis )

[Porter et al. 2010] The ESMoL Language and Tools for High-Confidence Distributed Control
Systems Design. Technical Report, Vanderbilt University, 2010.
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ﬁ? TTEthernet Model Validation

[§1§
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V Overview

= Hardware-in-the-loop simulation
= Virtual prototyping of time-triggered CPS

= Passivity-based design of adaptive cruise
controller

= Model-based control and integration: Adaptive
cruise controller and lane keeping controller
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Adaptive Cruise Controller &B

ACC
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[Eyisi et al. 2013] Model-Based Control Design and Integration of CPS, JCSE 2013. 11



Passivity-Based Desi
V assivi \\/’ Ua:l([e) esign

= Passivity Indices = Throttle Controller PI Gains
Quantifies the level of Non-optimized (Manually
passivity rather than the tuned gains)

typical binary characterization
of passive or not passive.

= Application of model-free

Indices optimized Gains

= Automatically generated
using Hookes and Jeeves

passivity indices evaluation search
= Application of Passivity Indices = Non-optimized gains are
to ACC used for initial values
Input-Output Mapping = Varies for each velocity
(Leading Vehicle Velocity > profile
Host Vehicle Velocity)

Focused on the PI throttle
controller of the ACC
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V Experiments

= Control gains = Platform
Manually tuned Matlab/Simulink
Optimized passivity indexes Virtual platform

= Dynamic speed profiles Hardware-in-the-loop

simulation platform

= Design space exploration
(virtual platform)

= Performance in the
presence of disturbance

Nominal _
10% increase in Vehicle 100Mbit/s TTEthernet
Mass 1Gbit/s TTEthernet

25% increase in Vehicle
Mass
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Sinusoidal Lead Velocity Profile

(Matlab /Simulink)
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Velocity (Km/h)

Velocities of the Host and Lead Vehicles (Platform)

100 ! ! ! !

o] e Lead Velocity

‘ Host Vellocity (Optimized Ihdices) |
T Host Velocity (Non-Optimized Indices)

0 20 40 60 80 100

Time (s)

120

Velocity (Km/h)

Velocities of the Host and Lead Vehicles (Platform)

70 . T <]
Host Velocity (Optimized Indices) L ~
68 S

---=-Host Velocity (Non-Optimized Indices | ‘
----Lead Velocity !

[+]
N
T

a
(=]
I

56

66

64

(=2}
o
I

52‘.5‘ gl ™, .o' :
[ [ - L S S S S ; . |
34 36 38 40 42 44
Time (s)

Zoomed-In

15



(VP)
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Velocity (Km/h)

Step-wise Lead Velocity Profile
(Matlab /Simulink)
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Step-wise Lead Velocity Profile
(HIL)
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Step-wise Lead Velocity Profile
(VP)
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Velocity (Km/h)
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Design Space Exploration @

= In order to improve the control performance, we can increase the sampling
rate.

= ACC control software on HIL simulator is not computationally intense:

InputHandler: 200ns InputHandler i| | i|
. Ot putHandl L. [
InstrClstrSens: 100ns HrpRaReEr e th period (10ms) N
. InstrClstriens X | !
UpperLevelController: 300ns @ o e i T i
LowLevelController: 1.7us LovlevelController I I
InstrClstract | [ &
InstrClstrAct: 100ns PR nth period (10ms)—--—---— y
OutputHandler: 200ns
GG 7 GG T T 7
Host Velocity | 4 Host Velocity | g

S

B Lead Velocity | R EEE Lead Velocity [~~~ {7 &

Velocity (km/h)
R
Velocity (km/h)
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Simulation Efficiency 16§

= TTEthernet model simulation efficiency:

400
sso| | I Model in SystemC/TLM | Event number of nodes are connected with a central
I Mociel in OMNeT++ INET switch.

0 l Increasingly add a pair of nodes into network
%25‘3 I 7 Each pair of hodes communicates with each other
£ 2m i using TT, RC, and BE traffic.
2 ol | Each node sends out a TT frame, a RC frame, a BE
© frame every 10ms.

oo T 300,000 x #nodes frames totally

S0 7 Simulation time is 1000s

2 4 g g 10 12 14 16
Number of Nodes

= 100s simulation time of ACC under a machine with 3.40GHz and 8GB
memory:

102s CPU time for 10ms sampling period
194s CPU time for 5ms sampling period
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V Overview

= Hardware-in-the-loop simulation
= Virtual prototyping of time-triggered CPS

= Passivity-based design of adaptive cruise
controller

= Model-based control and integration: Adaptive
cruise controller and lane keeping controller
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Lane Keeping Controller
LKC

= Lateral vehicle dynamics Lateral Displacement
= Controller 1: PI?D

Computed desired yaw rate -- :7/“ ___________________
= Controller 2: PI

= Computes desired steering
angle, §;, to achieve zero
lateral displacement at a
lookahead distance lookahead distance

Y

y; | Controller-1| ,. . | Controller-2

PI‘'D 3 PI
Controller - Controller
" Vehicle Dynamics

&y 1 desired steering angle v : lateral displacement
1 : desired yaw rate 1" : yaw rate
e, : yaw rate error

[Shang et al. 2013] ACC and LKC Integration, MED 2013, 24



Speed (Km/h)
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ACC/LKC Interactions
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ﬁ? Integrated ACC/LKC Controller

Y

LKC

Radar Inputs
(Range & Range Rate)

Driver Inputs

Curvature [Supervisory Desired Set Speed

Controller ACC

Vehicle Dynamics

Odes; Pmcdes

Road

Vp, Qp

Straight Road

V=1,

Curved Road

P < Pth
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E? Integrated ACC/LKC Controller
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E? Integrated ACC/LKC Controller

Acceleration (mlsa)
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V Future Work

= Passivity-based design
Control design using model-free optimization
Switching between multiple modes of operation
Passivity design for LKC
Passivity design for integrated ACC/LKC

= Virtual prototyping of CPS
Verification of virtual platform model
Design space exploration
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V Back-up Slides
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\ ¥4 Virtual Platform




V Software Layer

pend on its own sc_event object

Each node of the CPS has its own task set.
Each software component is a TT task which
corresponds to a SystemC thread process.

The processes are concurrent in nature, but will
be scheduled to run serially.

The functionality of each task is the C Code
generated from MATLAB/Simulink model.

[
notified by RTOS s:hed&nler

m
read TT msgs [ local data

l

invoke functionality

l

1
I
1
I
I
I
|
I
I
I
I
I
I
1
I
]
I

= Between two synchronization points in a process, sdvance annotated time
the execution of a piece of code takes zero ! l
simulation time, so the task needs to invoke an!
generate outputs

RTOS primitive to delay itself for its annotated !

execution time before generates outputs.
= A TT task mainly runs in three states: I Task Set on PE1
"/C;; /,Mi/fREﬂdr 3‘“‘-\ ( ;asqiyll -:'(;'Iza_f.l{qh\:l = . |TE|5|+.1.,F'.
Triggeret?‘/t;vclocl::‘“‘———ﬂ// dedw b0 Fun l\\__LOV.I k\._'.'? \_U/
Create']T Task J_J__J___H F‘reer}med .
Running \
32

\.< Idle \‘/,

Completed



V Processing Element Models

= A processing element (PE) corresponds to the underlying computational
environment in which the control application software runs.

= In order to simulate the computation efficiently at early stages, we can
model the PE at a high level of abstraction — at RTOS level — to take into
account the effect of serializing tasks on a processor.

= We use a TT RTOS model that abstracts away the underlying hardware and
provides TT computation services to the upper control application.

= The control application tasks, abstract RTOS model and other models will
be converted to communicating concurrent processes running on a discrete

event simulator.

RTOS Implementation

Processes

Processor

Discrete Event Simulation Kernel

Real hardware + system software

.f_l Application (source code) :

III'4| SLDL (e.g. SystemC)

Accurate and efficient simulation

33



\ ¥4 TT RTOS Model (1/2)

= TT tasks are activated by the TT activator at the predefined times
according to an g priori schedule table.

=TT activator’s clock can be independent or synchronized with TT
communication system’s clock.

= When activated, a TT task does not run immediately but is put into a
ready queue waiting for being scheduled to run.

IRC

o T

AT _ . \
____ ':( Idle }\:l/ F ¥ Ready
'://_\} \M@_/ = T
TT Communication 1 S * Scheduler}/ - .'II

pieiety clack
S?Steml,.- {.‘-{' \ F‘reerlﬁpt ed

| . |
Mt Cu:un"l"pleted f 5EhEdu|§fKD Run
\_ 1

i -'/
TT Activator hwi

= The scheduler can have a specific scheduling policy to schedule the
ready queue, which consists of TT tasks and ISRs.

= This mechanism is useful for the design of mixed time-/event-triggered
systems.
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TT RTOS Model (2/2) 16§

= Using wait-for-event other than wait-for-delay to advance exmeqcutlon time to
deal with interrupt handling [Zabel et al. 2009].

= Inter-task communication is ISR Arnot=STire(0.2rel——
achieved by: mh&ﬁ mm IS .
Shared variables within a PE { ’;ms 1. smsf“f 2.5ms {;1;5 73, ?mlf:* ame
Message passing between multi-PES | Lo ey sime) ekt e el svent i o Tl
Overwritable and sticky state EZTESZTﬂTSTTi;EL?f et e waltiekay, evert | precanpt sventl;
messages (not consumed by reading) el e elanestimes

= A HAL (hardware abstraction layer) model is added to wrap the TT RTOS
model for PE integration with a bus and other peripherals.
Has a multi-port sc_port object used to collect all the IRQs of peripherals.
Implements the pure virtual functions of a HAL interface (a hierarchical channel).
RTOS model has a sc_port obiect parameterized with HAL interface to connect to the HAL

HAL Layer
layer model. IRQ Wires v | RTOS Model
interrupt_event() :nnutateTiming[]
T a——=—I== ——O¥_ .
initiate_tra SendTTMsg()
Connect to Bus | HeceiveTl‘Msgﬂ

[Zabel et al. 2009] Accurate RTOS Modeling and Analysis with SystemC. Hardware—dependent

Software, Chapter 9, 2009. 35



TTEthernet Model

TTEDevice
<<Modeal==

= The network topology is star or
cascaded star — switches segment ?LF\

the collision domains:

Blocking transport interface of TLM-2.0 is | |
efficient and accurate enough to model TTESwitch TTEController
the Ethernet frame transmission. <<Modsl>> <<Modsl>>

= TTEthernet controller and switch are
derived from an abstract base class.

= An abstract 77EDevice base module

——————————

- -

ss
ss
~

-
-
-

-

Synchronization -




Sensors and Actuators

[§1§

= The cyber part interacts with the physical part via sensors/actuators.

= Each sensor/actuator is a thread process.

= Each sensor periodically reads data from physical model and generates
IRQ to let PE initiate a transaction.

= Each actuator passively receives data from PE periodically or
sporadically and writes them to the physical model.

read dynamic variables of
/ 4 physical model ':,I\ “
/ ! Vo
J,f eI 1,1 “send sensing data to PE
I \ through transactions _
I ¥ Vo "‘\ ; q
\
\ send IRQ to PE 1& qu rl
\\ A /\ |
\ | 47! N | !
“ - / / ™ /
~ - 4 ~
< Sl A ~1 7
S F--- L 1
i " i » Actuator
I

receive data from PE through )

P transactions B
Vi S
y v \

s < write dynamic variables of ""\I
f physical model \
n.\ |

s |

| S~ | ¥
| - \\l | | /|f
| ! al .
| ' L
<-—-Control Delay---=4 r:—---cantral Delay----3 | Time

- Sensing Period-- - E G Sensing Period--—--- 3
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Integration in Time Domain

SystemC uses discrete event simulator: an event can happen at any
time point (the time granularity is small).

CarSim uses a fixed-step solver: the interval I between two successive
mathematical model updates is fixed (e.g. 1ms).

Sensing period T$ > I and control delay § > I. (not strong in reality)

After an Actuation, next Sensing should at least be separated by an
interval boundary. (not strong by using TTA)

D‘F |511 ru1| c1' m{ |51{ C2| NZI c2 IAI{ |531
-e-L - | T
SystemC —L . g

111111

s ] mT Ts»fmImT B ssTTsmITsuTTmI :

ILlIms IJlilImsIJIi.I ms bjli_l ms bjliimshjliimshjl-ﬂ mlel-HI msh-!iimslnjliimsljlqimshjl T i me
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V TTEthernet Model Evaluation

= We set up a cascaded star network with different ™

power-on times to evaluate the model’s
synchronization services.

Node 1, 2, 5, and 6 are SMs.

Switch 1, 2, and 3 are CMs.

Node 3, 4, 7, and 8 are SCs.

The integration cycle is 10ms.

Configuration files are generated by the TTTech toolchain.

= Two-step synchronization mechanism:

N1 & N2 & N5 & N6 SW1 & SW2 & SW3  Sync  Resync
0s/0s/0s/0s 0s/0s/0s 29.834ms -
0.1ms/1ms/0.5ms/1.2ms 1.1ms/0.8ms/1.5ms 30.845ms -
2ms/4ms/8ms/6ms 30ms/10ms/40ms  79.856ms -
0s/0s/0s/0s 0s/30ms/0s 38.677ms -

0s/0s/0s/0s 0s/50s/0s 29.776ms 50.0256s

Mode 2 Node 4

Evaluation Setup
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E? Supervisory Controller
Lﬂtraight Road ) \

=

V=V, P = Pth

A;: Max Desired Lateral Acceleratiob : User Set Speed
p : Curvature (1/Curve radius) v : Desired Set speed
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