
Institute for Software Integrated Systems

Vanderbilt University

Model-Based Control and Integration of

Automotive CPS

 Xenofon Koutsoukos

Emeka Eyisi, Zhenkai Zhang, Di Shang, Joe Porter,
Gabor Karsai, Janos Sztipanovits

SoI Review Meeting

Nashville, TN, April 23, 2013

Control in Automotive CPS

2

Plant

Dynamics

Models

Controller

Models

Physical design

Software

Architecture

Models

Software

Component

Code
Software design

System

Architecture

Models

Resource

Management

Models

 System/Platform Design

Passivity-based design:
Decouple stability from implementation side effects

Control Tasks

ACC
Task

Task
n

Control Tasks

LKC
Task

Task
n

S

A S
S

A
S

A

S

A

S

A S
A

S

S – Sensor
A – Actuator

Overview

 Hardware-in-the-loop simulation

 Virtual prototyping of time-triggered CPS

 Passivity-based design of adaptive cruise
controller

 Model-based control and integration: Adaptive
cruise controller and lane keeping controller

3

Hardware-in-the-Loop
Simulation Platform

 Design/Visualization PC
 Vehicle modeling using CarSim

 Controller design

 RT-Target
 Represents automotive vehicle

 CarSim model is deployed via VI
models

 NI ETS 2011 RTOS

 TTTech PCIe-XMC card

 8 × 100Mbit/s TTTech
TTEthernet Development
Switch

 ECU – IBX-530W boxes
 Controller C code is deployed

 RT Linux kernel

 TTEthernet timer driver

 TTEthernet deriver for Realtek NIC

4

Overview

 Hardware-in-the-loop simulation

 Virtual prototyping of time-triggered CPS

 Passivity-based design of adaptive cruise
controller

 Model-based control and integration: Adaptive
cruise controller and lane keeping controller

5

Virtual Platform

6 [Zhang et al. 2013] Co-Simulation Framework for Design of Time-Triggered CPS, ICCPS 2013.

Network/Platform Layer

 As the backbone of virtual prototyping of CPS, the network/platform layer
bridges the software layer and the physical layer.

 The behavior of this layer is captured by several models in SystemC:
 A clock model for driving TT operations and synchronization

 A processing element (PE) model in the form of RTOS model for TT computation

 A network model compliant with the TTEthernet protocol for TT communication

 Sensor and actuator models for interaction with the physical environment

7 [Zhang et al. 2013] Modeling Time-Triggered Ethernet in SystemC/TLM , IESS 2013.

Model-Based Approach

 The first 4 steps corresponds to
ESMoL design [Porter et al. 2010].

 From the designed ESMoL model
we can generate the executable
co-simulation model:
 Takes C code generated by RTW of

MATLAB/Simulink to realize control
functionalities.

 Uses UDM model navigation APIs to
traverse the ESMoL_Abstract model

 Uses Google Ctemplate to fill in the
configuration templates

 A template for PE’s task set: each PE’s
task set is generated as a SystemC
module in which tasks are thread
processes.

 A template for sc_main() function in
which different parts of different nodes
are instantiated and connented.

8
[Porter et al. 2010] The ESMoL Language and Tools for High-Confidence Distributed Control
Systems Design. Technical Report, Vanderbilt University, 2010.

TTEthernet Model Validation

 We set up a star topology having 4 nodes connected to a
central switch with 100Mbits/s links.
 Communication period 𝑇𝑐𝑜𝑚𝑚 = 10ms, and time slot 𝑡𝑠 = 200𝜇𝑠.

 Maximum clock drift is 200ppm.

 Node 1 sends both TT and BE traffic to Node 2. (TT is at 1ms offset)

 Node 3 and Node 4 send only BE traffic to Node 2.

 Configuration files are generated by the TTTech TTEthernet toolchain.

 Switch dispatches TT frame sent by Node 1 at 1.4ms offset.

 The metrics of this validation are
 Average end-to-end latency

 Jitter

 We compare the TTEthernet model with
 A TTEthernet model in OMNeT++ INET [Steinbach et al. 2011]

 A software-based implementation from TTTech (measurement
techniques are described in [Bartols et al. 2011]

9
[Steinbach et al. 2011] An Extension of the OMNeT++ INET Framework for Simulating Real-time Ethernet with High Accuracy.
SIMUTooLs, 2011.

[Bartols et al. 2011] Performance Analysis of Time-Triggered Ether-Networks Using Off-the-Shelf-Components. ISORCW, 2011

90µs gap due to measurement port configuration

gap due to measurement port configuration

123 124 123 124

Overview

 Hardware-in-the-loop simulation

 Virtual prototyping of time-triggered CPS

 Passivity-based design of adaptive cruise
controller

 Model-based control and integration: Adaptive
cruise controller and lane keeping controller

10

Adaptive Cruise Controller
(ACC)

 Longitudinal vehicle dynamics

 Upper level controller

 Switches between cruise
control model and distance
spacing mode

 Low level controller

 Switches between throttle or
brake controllers

[Eyisi et al. 2013] Model-Based Control Design and Integration of CPS, JCSE 2013. 11

Passivity-Based Design
(VU/ND)

 Passivity Indices

 Quantifies the level of
passivity rather than the
typical binary characterization
of passive or not passive.

 Application of model-free
passivity indices evaluation

 Application of Passivity Indices
to ACC

 Input-Output Mapping
(Leading Vehicle Velocity →

Host Vehicle Velocity)

 Focused on the PI throttle
controller of the ACC

 Throttle Controller PI Gains

 Non-optimized (Manually
tuned gains)

 Indices optimized Gains

 Automatically generated
using Hookes and Jeeves
search

 Non-optimized gains are
used for initial values

 Varies for each velocity
profile

12

Experiments

 Control gains

 Manually tuned

 Optimized passivity indexes

 Dynamic speed profiles

 Performance in the
presence of disturbance

 Nominal

 10% increase in Vehicle
Mass

 25% increase in Vehicle
Mass

 Platform

 Matlab/Simulink

 Virtual platform

 Hardware-in-the-loop
simulation platform

 Design space exploration
(virtual platform)

 100Mbit/s TTEthernet

 1Gbit/s TTEthernet

13

Zoomed-In

Sinusoidal Lead Velocity Profile
(Matlab /Simulink)

14

Zoomed-In

Sinusoidal Lead Velocity Profile
(HIL)

15

Zoomed-In

Sinusoidal Lead Velocity Profile
(VP)

16

Step-wise Lead Velocity Profile
(Matlab /Simulink)

Zoomed-In

17

Zoomed-In

Step-wise Lead Velocity Profile
(HIL)

18

Zoomed-In

Step-wise Lead Velocity Profile
(VP)

19

Physical Disturbance

Design Space Exploration

 In order to improve the control performance, we can increase the sampling
rate.

 ACC control software on HIL simulator is not computationally intense:
 InputHandler: 200ns

 InstrClstrSens: 100ns

 UpperLevelController: 300ns

 LowLevelController: 1.7µs

 InstrClstrAct: 100ns

 OutputHandler: 200ns

 For this ACC case study (7 messages exchanged in a period), using
software-based TTEthernet implementation, TTTech toolchain limits the
fastest reasonable sampling period to 10ms in this case.

 We can simulate ACC with smaller sampling period (5ms) by simulating a
hardware-based implementation which has 1Gbits/s bandwidth and more
precise clock synchronization.

21
10ms sampling period 5ms sampling period

21

Simulation Efficiency

 TTEthernet model simulation efficiency:

 100s simulation time of ACC under a machine with 3.40GHz and 8GB
memory:

 102s CPU time for 10ms sampling period

 194s CPU time for 5ms sampling period

22

 Event number of nodes are connected with a central
switch.

 Increasingly add a pair of nodes into network

 Each pair of nodes communicates with each other
using TT, RC, and BE traffic.

 Each node sends out a TT frame, a RC frame, a BE
frame every 10ms.

 300,000 × #nodes frames totally

 Simulation time is 1000s

22

Overview

 Hardware-in-the-loop simulation

 Virtual prototyping of time-triggered CPS

 Passivity-based design of adaptive cruise
controller

 Model-based control and integration: Adaptive
cruise controller and lane keeping controller

23

Lane Keeping Controller
(LKC)

 Lateral vehicle dynamics

 Controller 1: PI2D

 Computed desired yaw rate

 Controller 2: PI

 Computes desired steering
angle, δf, to achieve zero

lateral displacement at a
lookahead distance

lookahead distance

Lateral Displacement

[Shang et al. 2013] ACC and LKC Integration, MED 2013. 24

ACC/LKC Interactions

Integrated ACC/LKC Controller

𝒗 =
𝑨𝒍

𝝆

Straight Road

Curved Road

𝝆 ≥ 𝝆𝒕𝒉 𝒗 = 𝒗𝒖

𝝆 < 𝝆𝒕𝒉

26

Integrated ACC/LKC Controller

27

Integrated ACC/LKC Controller

28

Future Work

 Passivity-based design

 Control design using model-free optimization

 Switching between multiple modes of operation

 Passivity design for LKC

 Passivity design for integrated ACC/LKC

 Virtual prototyping of CPS

 Verification of virtual platform model

 Design space exploration

29

Back-up Slides

30

Virtual Platform

31

Software Layer

 Each node of the CPS has its own task set.

 Each software component is a TT task which
corresponds to a SystemC thread process.

 The processes are concurrent in nature, but will
be scheduled to run serially.

 The functionality of each task is the C Code
generated from MATLAB/Simulink model.

 Between two synchronization points in a process,
the execution of a piece of code takes zero
simulation time, so the task needs to invoke an
RTOS primitive to delay itself for its annotated
execution time before generates outputs.

 A TT task mainly runs in three states:

32

Processing Element Models

 A processing element (PE) corresponds to the underlying computational
environment in which the control application software runs.

 In order to simulate the computation efficiently at early stages, we can
model the PE at a high level of abstraction – at RTOS level – to take into
account the effect of serializing tasks on a processor.

 We use a TT RTOS model that abstracts away the underlying hardware and
provides TT computation services to the upper control application.

 The control application tasks, abstract RTOS model and other models will
be converted to communicating concurrent processes running on a discrete
event simulator.

33

TT RTOS Model (1/2)

 TT tasks are activated by the TT activator at the predefined times
according to an a priori schedule table.

 TT activator’s clock can be independent or synchronized with TT
communication system’s clock.

 When activated, a TT task does not run immediately but is put into a
ready queue waiting for being scheduled to run.

34

 The scheduler can have a specific scheduling policy to schedule the
ready queue, which consists of TT tasks and ISRs.

 This mechanism is useful for the design of mixed time-/event-triggered
systems.

TT RTOS Model (2/2)

 Using wait-for-event other than wait-for-delay to advance execution time to
deal with interrupt handling [Zabel et al. 2009].

 A HAL (hardware abstraction layer) model is added to wrap the TT RTOS
model for PE integration with a bus and other peripherals.
 Has a multi-port sc_port object used to collect all the IRQs of peripherals.

 Implements the pure virtual functions of a HAL interface (a hierarchical channel).

 RTOS model has a sc_port object parameterized with HAL interface to connect to the HAL
layer model.

35
[Zabel et al. 2009] Accurate RTOS Modeling and Analysis with SystemC. Hardware-dependent
Software, Chapter 9, 2009.

 Inter-task communication is
achieved by:
 Shared variables within a PE

 Message passing between multi-PEs

 Overwritable and sticky state
messages (not consumed by reading)

TTEthernet Model

36

 The network topology is star or
cascaded star – switches segment
the collision domains:
 Blocking transport interface of TLM-2.0 is

efficient and accurate enough to model
the Ethernet frame transmission.

 TTEthernet controller and switch are
derived from an abstract base class.

 An abstract TTEDevice base module
realizes common functions of switch
and controller.
 Initialization

 Bidirectional ports

 Scheduler

 Protocol state machines

 Synchronization

Sensors and Actuators

 The cyber part interacts with the physical part via sensors/actuators.

 Each sensor/actuator is a thread process.

 Each sensor periodically reads data from physical model and generates
IRQ to let PE initiate a transaction.

 Each actuator passively receives data from PE periodically or
sporadically and writes them to the physical model.

37

Integration in Time Domain

 SystemC uses discrete event simulator: an event can happen at any
time point (the time granularity is small).

 CarSim uses a fixed-step solver: the interval 𝐼 between two successive
mathematical model updates is fixed (e.g. 1ms).

 Sensing period 𝑇𝑆
𝑆 > 𝐼 and control delay δ > 𝐼. (not strong in reality)

 After an Actuation, next Sensing should at least be separated by an
interval boundary. (not strong by using TTA)

38

TTEthernet Model Evaluation

 We set up a cascaded star network with different
power-on times to evaluate the model’s
synchronization services.
 Node 1, 2, 5, and 6 are SMs.

 Switch 1, 2, and 3 are CMs.

 Node 3, 4, 7, and 8 are SCs.

 The integration cycle is 10ms.

 Configuration files are generated by the TTTech toolchain.

 Two-step synchronization mechanism:
 SM nodes send PCFs to CMs.

 CMs calculate the global time from the PCFs; send
“compressed” PCFs to SMs and SCs.

 SMs and SCs receive PCFs and adjust their clocks to
integrate into the time base.

39

ACC/LKC

40

Supervisory Controller

𝒗 =
𝑨𝒍

𝝆

Straight Road

Curved Road

𝝆 ≥ 𝝆𝒕𝒉 𝒗 = 𝒗𝒖

𝝆 < 𝝆𝒕𝒉

𝑨𝒍: Max Desired Lateral Acceleration

𝝆 : Curvature (1/Curve radius) 𝒗 : Desired Set speed

𝒗𝒖 : User Set Speed

41

