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 System/Platform Design 

Passivity-based design:  
Decouple stability from implementation side effects 
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Overview 

 Hardware-in-the-loop simulation 

 Virtual prototyping of time-triggered CPS 

 Passivity-based design of adaptive cruise 
controller 

 Model-based control and integration: Adaptive 
cruise controller and lane keeping controller 
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Hardware-in-the-Loop 
Simulation Platform 

 Design/Visualization PC 
 Vehicle modeling using CarSim 

 Controller design 

 RT-Target 
 Represents automotive vehicle 

 CarSim model is deployed via VI 
models 

 NI ETS 2011 RTOS 

 TTTech PCIe-XMC card 

 8 × 100Mbit/s TTTech 
TTEthernet Development 
Switch 

 ECU – IBX-530W boxes 
 Controller C code is deployed 

 RT Linux kernel 

 TTEthernet timer driver 

 TTEthernet deriver for Realtek NIC 
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Virtual Platform 

6 [Zhang et al. 2013] Co-Simulation Framework for Design of Time-Triggered CPS, ICCPS 2013. 



Network/Platform Layer 

 As the backbone of virtual prototyping of CPS, the network/platform layer 
bridges the software layer and the physical layer. 

 The behavior of this layer is captured by several models in SystemC: 
 A clock model for driving TT operations and synchronization 

 A processing element (PE) model in the form of RTOS model for TT computation 

 A network model compliant with the TTEthernet protocol for TT communication 

 Sensor and actuator models for interaction with the physical environment 

7 [Zhang et al. 2013] Modeling Time-Triggered Ethernet in SystemC/TLM , IESS 2013. 



Model-Based Approach 

 The first 4 steps corresponds to 
ESMoL design [Porter et al. 2010]. 

 From the designed ESMoL model 
we can generate the executable 
co-simulation model: 
 Takes C code generated by RTW of 

MATLAB/Simulink to realize control 
functionalities. 

 Uses UDM model navigation APIs to 
traverse the ESMoL_Abstract model 

 Uses Google Ctemplate to fill in the 
configuration templates 

 A template for PE’s task set: each PE’s 
task set is generated as a SystemC 
module in which tasks are thread 
processes. 

 A template for sc_main() function in 
which different parts of different nodes 
are instantiated and connented. 

8 
[Porter et al. 2010] The ESMoL Language and Tools for High-Confidence Distributed Control 
Systems Design. Technical Report, Vanderbilt University, 2010. 



TTEthernet Model Validation 

 We set up a star topology having 4 nodes connected to a 
central switch with 100Mbits/s links. 
 Communication period 𝑇𝑐𝑜𝑚𝑚 = 10ms, and time slot 𝑡𝑠 = 200𝜇𝑠. 

 Maximum clock drift is 200ppm. 

 Node 1 sends both TT and BE traffic to Node 2. (TT is at 1ms offset) 

 Node 3 and Node 4 send only BE traffic to Node 2. 

 Configuration files are generated by the TTTech TTEthernet toolchain. 

 Switch dispatches TT frame sent by Node 1 at 1.4ms offset. 

 The metrics of this validation are 
 Average end-to-end latency 

 Jitter 

 We compare the TTEthernet model with 
 A TTEthernet model in OMNeT++ INET [Steinbach et al. 2011] 

 A software-based implementation from TTTech (measurement 
techniques are described in [Bartols et al. 2011] 

9 
[Steinbach et al. 2011] An Extension of the OMNeT++ INET Framework for Simulating Real-time Ethernet with High Accuracy. 
SIMUTooLs, 2011. 

[Bartols et al. 2011] Performance Analysis of Time-Triggered Ether-Networks Using Off-the-Shelf-Components. ISORCW, 2011 

90µs gap due to measurement port configuration 

gap due to measurement port configuration 
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Adaptive Cruise Controller 
(ACC) 

 Longitudinal vehicle dynamics 

 Upper level controller 

 Switches between cruise 
control model and distance 
spacing mode 

 Low level controller 

 Switches between throttle or 
brake  controllers 

 
[Eyisi et al. 2013] Model-Based Control Design and Integration of CPS, JCSE 2013. 11 



Passivity-Based Design 
(VU/ND) 

 Passivity Indices 

 Quantifies the level of 
passivity rather than the 
typical binary characterization 
of passive or not passive.  

 Application of model-free 
passivity indices evaluation 

 Application of Passivity Indices 
to ACC  

 Input-Output Mapping 
(Leading Vehicle Velocity → 

Host Vehicle Velocity) 

 Focused on the PI throttle 
controller of the ACC  

 Throttle Controller PI Gains 

 Non-optimized (Manually 
tuned gains) 

 Indices optimized Gains 

 Automatically generated 
using Hookes and Jeeves 
search 

 Non-optimized gains are 
used for initial values 

 Varies for each velocity 
profile 
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Experiments 

 Control gains 

 Manually tuned 

 Optimized passivity indexes 

 Dynamic speed profiles 

 Performance in the 
presence of disturbance 

 Nominal 

 10% increase in Vehicle 
Mass 

 25% increase in Vehicle 
Mass 

 

 Platform 

 Matlab/Simulink 

 Virtual platform 

 Hardware-in-the-loop 
simulation platform 

 Design space exploration 
(virtual platform) 

 100Mbit/s TTEthernet 

 1Gbit/s TTEthernet 
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Zoomed-In 

Sinusoidal Lead Velocity Profile  
(Matlab /Simulink) 
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Zoomed-In 

Sinusoidal Lead Velocity Profile  
(HIL) 
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Zoomed-In 

Sinusoidal Lead Velocity Profile  
(VP) 
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Step-wise Lead Velocity Profile  
(Matlab /Simulink) 

Zoomed-In 
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Zoomed-In 

Step-wise Lead Velocity Profile  
(HIL) 
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Zoomed-In 

Step-wise Lead Velocity Profile  
(VP) 
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Physical Disturbance 



Design Space Exploration 

 In order to improve the control performance, we can increase the sampling 
rate. 

 ACC control software on HIL simulator is not computationally intense: 
 InputHandler: 200ns 

 InstrClstrSens: 100ns 

 UpperLevelController: 300ns 

 LowLevelController: 1.7µs 

 InstrClstrAct: 100ns 

 OutputHandler: 200ns 

 For this ACC case study (7 messages exchanged in a period), using 
software-based TTEthernet implementation, TTTech toolchain limits the 
fastest reasonable sampling period to 10ms in this case. 

 We can simulate ACC with smaller sampling period (5ms) by simulating a 
hardware-based implementation which has 1Gbits/s bandwidth and more 
precise clock synchronization. 

21 
10ms sampling period 5ms sampling period 
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Simulation Efficiency 

 TTEthernet model simulation efficiency: 

 

 

 

 

 

 

 

 

 

 100s simulation time of ACC under a machine with 3.40GHz and 8GB 
memory: 

 102s CPU time for 10ms sampling period 

 194s CPU time for 5ms sampling period 

22 

 Event number of nodes are connected with a central 
switch. 

 Increasingly add a pair of nodes into network 

 Each pair of nodes communicates with each other 
using TT, RC, and BE traffic. 

 Each node sends out a TT frame, a RC frame, a BE 
frame every 10ms. 

 300,000 × #nodes frames totally 

 Simulation time is 1000s 
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Lane Keeping Controller 
(LKC) 

 Lateral vehicle dynamics 

 Controller 1: PI2D 

 Computed desired yaw rate 

 Controller 2: PI 

 Computes desired steering 
angle, δf, to achieve zero 

lateral displacement at a 
lookahead distance 

 

 

 

lookahead distance 

Lateral Displacement 

[Shang et al. 2013] ACC and LKC Integration, MED 2013. 24 



ACC/LKC Interactions 



Integrated ACC/LKC Controller 

𝒗 =
𝑨𝒍

𝝆
 

Straight Road 

Curved Road 

𝝆 ≥ 𝝆𝒕𝒉 𝒗 = 𝒗𝒖 

𝝆 < 𝝆𝒕𝒉 
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Integrated ACC/LKC Controller 
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Integrated ACC/LKC Controller 
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Future Work 

 Passivity-based design 

 Control design using model-free optimization 

 Switching between multiple modes of operation 

 Passivity design for LKC 

 Passivity design for integrated ACC/LKC 

 Virtual prototyping of CPS 

 Verification of virtual platform model 

 Design space exploration 
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Back-up Slides 
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Virtual Platform 

31 



Software Layer 

 Each node of the CPS has its own task set. 

 Each software component is a TT task which 
corresponds to a SystemC thread process. 

 The processes are concurrent in nature, but will 
be scheduled to run serially. 

 The functionality of each task is the C Code 
generated from MATLAB/Simulink model. 

 Between two synchronization points in a process, 
the execution of a piece of code takes zero 
simulation time, so the task needs to invoke an 
RTOS primitive to delay itself for its annotated 
execution time before generates outputs. 

 A TT task mainly runs in three states: 

32 



Processing Element Models 

 A processing element (PE) corresponds to the underlying computational 
environment in which the control application software runs. 

 In order to simulate the computation efficiently at early stages, we can 
model the PE at a high level of abstraction – at RTOS level – to take into 
account the effect of serializing tasks on a processor. 

 We use a TT RTOS model that abstracts away the underlying hardware and 
provides TT computation services to the upper control application. 

 The control application tasks, abstract RTOS model and other models will 
be converted to communicating concurrent processes running on a discrete 
event simulator. 

33 



TT RTOS Model (1/2) 

 TT tasks are activated by the TT activator at the predefined times 
according to an a priori schedule table. 

 TT activator’s clock can be independent or synchronized with TT 
communication system’s clock. 

 When activated, a TT task does not run immediately but is put into a 
ready queue waiting for being scheduled to run. 

34 

 The scheduler can have a specific scheduling policy to schedule the 
ready queue, which consists of TT tasks and ISRs. 

 This mechanism is useful for the design of mixed time-/event-triggered 
systems. 



TT RTOS Model (2/2) 

 Using wait-for-event other than wait-for-delay to advance execution time to 
deal with interrupt handling [Zabel et al. 2009]. 

 

 

 

 

 

 A HAL (hardware abstraction layer) model is added to wrap the TT RTOS 
model for PE integration with a bus and other peripherals. 
 Has a multi-port sc_port object used to collect all the IRQs of peripherals. 

 Implements the pure virtual functions of a HAL interface (a hierarchical channel). 

 RTOS model has a sc_port object parameterized with HAL interface to connect to the HAL 
layer model. 

35 
[Zabel et al. 2009] Accurate RTOS Modeling and Analysis with SystemC. Hardware-dependent 
Software, Chapter 9, 2009. 

 Inter-task communication is 
achieved by: 
 Shared variables within a PE 

 Message passing between multi-PEs 

 Overwritable and sticky state 
messages (not consumed by reading) 



TTEthernet Model 
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 The network topology is star or 
cascaded star – switches segment 
the collision domains: 
 Blocking transport interface of TLM-2.0 is 

efficient and accurate enough to model 
the Ethernet frame transmission. 

 TTEthernet controller and switch are 
derived from an abstract base class. 

 An abstract TTEDevice base module 
realizes common functions of switch 
and controller. 
 Initialization 

 Bidirectional ports 

 Scheduler 

 Protocol state machines 

 Synchronization 



Sensors and Actuators 

 The cyber part interacts with the physical part via sensors/actuators. 

 Each sensor/actuator is a thread process. 

 Each sensor periodically reads data from physical model and generates 
IRQ to let PE initiate a transaction. 

 Each actuator passively receives data from PE periodically or 
sporadically and writes them to the physical model. 
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Integration in Time Domain 

 SystemC uses discrete event simulator: an event can happen at any 
time point (the time granularity is small). 

 CarSim uses a fixed-step solver: the interval 𝐼 between two successive 
mathematical model updates is fixed (e.g. 1ms). 

 Sensing period 𝑇𝑆
𝑆 > 𝐼 and control delay δ > 𝐼. (not strong in reality) 

 After an Actuation, next Sensing should at least be separated by an 
interval boundary. (not strong by using TTA) 
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TTEthernet Model Evaluation 

 We set up a cascaded star network with different 
power-on times to evaluate the model’s 
synchronization services. 
 Node 1, 2, 5, and 6 are SMs. 

 Switch 1, 2, and 3 are CMs. 

 Node 3, 4, 7, and 8 are SCs.  

 The integration cycle is 10ms. 

 Configuration files are generated by the TTTech toolchain. 

 Two-step synchronization mechanism: 
 SM nodes send PCFs to CMs. 

 CMs calculate the global time from the PCFs; send 
“compressed” PCFs to SMs and SCs. 

 SMs and SCs receive PCFs and adjust their clocks to 
integrate into the time base. 

39 



ACC/LKC 
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Supervisory Controller 

𝒗 =
𝑨𝒍

𝝆
 

Straight Road 

Curved Road 

𝝆 ≥ 𝝆𝒕𝒉 𝒗 = 𝒗𝒖 

𝝆 < 𝝆𝒕𝒉 

𝑨𝒍: Max Desired Lateral Acceleration 

𝝆 : Curvature (1/Curve radius) 𝒗 : Desired Set speed 

𝒗𝒖 : User Set Speed 
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