
Model-Based Design Framework for Wireless Sensor
Networks Using SysML, Simulink and Modelica

Baobing Wang and John S. Baras
Department of Electrical and Computer Engineering

University of Maryland, College Park, MD 20740, USA
{briankw, baras}@umd.edu

ABSTRACT
Existing ad hoc system design methods for Wireless Sensor
Networks (WSNs) suffer from lack of reusability, trade-off

analysis and design space exploration methods and tools. In
addition, the interactions between the continuous-time phys-
ical environments and WSNs have not been well studied. In
this paper, we propose a model-based systems design (MBSD)
framework for WSNs, which is a systematic methodology
applying systems engineering principles to support system
requirements, design, analysis and verification/validation pro-
cesses. Firstly, we describe a hierarchy of model libraries
to model various behaviors and structures of WSNs, includ-
ing physical environments, physical platforms, communica-
tion and computation components, system services and ap-
plications. Based on the MBSD framework, we introduce
a system design flow to compose both continuous-time and
event-triggered-time modules to develop applications with
support for trade-off analysis, design space exploration and
interactive simulations. Next, the main modules for physi-
cal platforms, the Media Access Control (MAC) layer, wire-
less channels and physical environments are described in de-
tail, and are modeled in the Systems Modeling Language
(SysML), Simulink and Modelica. Finally, we use a build-
ing thermal control system as the case study to demonstrate
the composability, reusability and flexibility of the proposed
MBSD framework.

Keywords
Model-Based System Design, Wireless Sensor Networks,
SysML, Hybrid Systems Modeling

1. INTRODUCTION
Wireless Sensor Networks (WSNs) are engineered systems
consisting of closely interacting physical environments, phys-
ical platforms, communication protocols and computation

algorithms. The design of such hybrid systems requires a
systems engineering view and an integrated design frame-
work that can support joint event-triggered and continuous-
time dynamics [5]. In addition, since hybrid systems usually
are very complex and too costly to be designed from scratch,
component reusability can never be overemphasized. Fi-
nally, hybrid systems design usually needs to consider multi-
ple objectives that may conflict with each other. For the same
application, several design alternatives with different perfor-
mances may be available. Therefore, the design framework
must support trade-off analysis and design space exploration.

Developing such a design framework for WSNs faces three
significant challenges. Firstly, due to the wide variety of
WSN applications and the heterogeneity of sensor platforms,
it is difficult to figure out the primitive function modules,
which are imperative for reusability. Secondly, integrating
the numerical solvers for continuous-time models with event-
triggered time models is an established, but far-from-trivial
problem. Finally, mission-critical applications usually re-
quire model checking, to guarantee certain properties (e.g.,
dead lock freeness, liveness and reachability), which is a
very time-consuming process. It is still an open problem on
how model libraries can be developed to enhance the scal-
ability of model checking. The involvement of continuous-
time models makes this problem more complex.

Several works have tried to improve the code reusability
of sensor network protocols. Klues et al. [10] proposed a
component-based architecture for the MAC layer in WSNs.
Ee et al. [6] introduced a modular network layer to enable
co-existing protocols to share and reduce code and resources
consumed at run-time. However, both works focus on proto-
col implementations rather than system designs.

Viptos, a joint modeling and design framework for WSNs,
was proposed in [2]. Mozumdar et al. [11] presented a sim-
ilar work modeled in Simulink. They can analyze the per-
formance of system designs by simulations and generate the
TinyOS application codes. Another work [12], introduced a
method to integrate Simulink and ns-2 for hybrid networked
control systems. However, only simulations are considered
in these works and sensor behaviors are tightly coupled with
communication protocols, which makes their components
hard to be reused.

Samper et al. [13] presented an approach for the formal mod-
eling and analysis of WSNs at various abstraction levels.
Formal model checking tools can be applied to verify their
models of hybrid systems. However, trade-off analysis is
not considered and the component reusability is not clearly
supported in their approach. Moppet, a model-driven per-
formance engineering framework for WSNs, was proposed
in [1], which is the closest work to our framework. Moppet
enables users to design WSN applications using the model
libraries and estimate their performances using event calcu-
lus and network calculus without simulations. However, the
continuous dynamic behaviors of physical environments are
not considered.

In this paper, we propose a model-based system design frame-
work for WSNs, which applies system engineering princi-
ples to model both event-triggered and continuous-time com-
ponents. Our contributions in this paper are three-fold.

Firstly, the MBSD framework is proposed, which provides a
hierarchy of system model libraries for applications, system
services, computation and communication algorithms, phys-
ical platforms and physical environments. Event-triggered-
time components are modeled in SysML and statechart dia-
grams are exploited to model their behaviors. Continuous-
time components are modeled in Simulink or Modelica and
their behaviors are described by differential equations. To
enhance the component reusability, modules of primitive func-
tionality have been distilled, with clearly defined ports for
them to exchange messages and data flows. Consequently,
the MBSD framework supports a plug-and-play design fash-
ion. To make our ideas more clear, the model libraries for
the MAC layer, physical platforms, wireless channels and
physical environments are explained in detail.

Secondly, based on the MBSD framework, a system design
flow is proposed, which can integrate both event-triggered-
time and continuous-time modules by composition for trade-
off analysis, design space exploration and interactive sim-
ulations. Using IBM Rational Rhapsody [7] as the devel-
opment environment, SysML Parametric Diagrams that de-
scribe the relationships between the system performance and
the design parameters and component properties can be eval-
uated. Trade-off analysis can be carried out by comparing
the evaluated results of system design alternatives. In addi-
tion, Simulink and C/C++ source files can be generated au-
tomatically from the MBSD framework, which can be used
for performance study and interactive simulations.

Finally, a building thermal control system is used as the case
study to demonstrate the reusability, composability and flex-
ibility of the proposed MBSD framework. In this example,
we illustrate how hybrid systems can be easily developed
using the modules in the model libraries, and how their per-
formance can be studied. Using the MBSD framework, de-
velopers can focus on the system design strategies, rather
than implementation details that are usually not familiar to
system experts.

The rest of this paper is organized as follows. We intro-
duce the proposed MBSD framework and design flow in
Section 2. In Section 3, we describe the main modules in
some model libraries. The case study is presented in Sec-
tion 4. Finally, Section 5 concludes this paper and discusses
the future work.

2. OVERVIEW OF THE FRAMEWORK
In this section, we first introduce the proposed MBSD frame-
work, with a hierarchy of model libraries to model various
behaviors and structures of WSNs. Then we describe the
design flow to develop applications, with support for trade-
off analysis, design space exploration and interactive simu-
lations.

2.1 Hierarchy of System Models
We view a WSN as an application-oriented data-centric ser-
vice provider. Sensors collaborate to deliver services to ac-
complish the network missions, fulfilling its requirements
and optimizing its performance subject to platform and en-
vironment constraints. The hierarchy of system models in
the MBSD framework is shown in Figure 1, aligned with
their corresponding counterparts in the real world.

Applications
(Requirements)

Wireless Sensor Networks System Models

System Services
(Information-oriented)

Application Models
(Functionality and Performance Reqs.)

Detection MonitoringTracking ...

Service Models
(Distributed Data Store and Retrieval)

Naming LocationQuery Syn ...

Computation/Algorithms,
Data Presentation,

Communication Protocols

Network Models
(Communication and Management)

Routing MobilityMAC Data
...Topology Control Power Control

Physical Systems
(Functions and Resource)

Physical Models
(Functions and Performance)

Actuator RouterSensor ...

Base Station Wireless Channel

Environment
Environment Models

GeometryPhenomena ...

Mapping

Mapping

Mapping

Figure 1: Hierarchy of System Models

The MBSD framework provides the model libraries for ap-
plications, services, computation algorithms, communica-
tion protocols, physical platforms and physical environments.

Application Model Library. A WSN application can be
specified with function requirements (e.g., tracking, detec-
tion and monitoring), performance requirements (e.g., sam-
pling rate, maximum delay, reliability and lifetime), physi-

cal system (e.g., sensors, routers, base stations and mobil-
ity) and the physical environment where the sensor network
will be deployed. The Application Model Library provides
modules that can precisely describe common sensor network
applications. In addition, special applications can also be
modeled by extending proper models in the library.

Service Model Library. Most WSN applications share sev-
eral common features that are used frequently, such as the
query service to retrieve data locally or remotely, the nam-
ing service to uniquely identify motes locally or globally, the
location service to compute the virtual or physical locations
and regions of sensor motes, the synchronization service,
etc. The Service Model Library provides modules for these
common services with interfaces to customize and compose
components to fulfill the application requirements.

Network Model Library. This library is of paramount im-
portance and resides in the center of the MBSD framework,
consisting of communication modules, computation mod-
ules and data management modules that are necessary to
implement various algorithms and protocols to accomplish
the upper layer services. In order to enhance the reusabil-
ity, components are modeled independently, and they can
interact with each other only by exchanging events and data
through ports. By well defining these ports, different algo-
rithms and protocols can be studied and compared systemat-
ically in a plug-and-play way, using components of the same
functionalities and ports, but with different implementations.

Physical System Model Library. This library is composed
of modules for various physical platforms in heterogeneous
WSNs. Despite their different capacities and computation
powers, these platforms can be viewed to be composed of at
most four parts: CPU, sensor, transceiver and battery (power
source). We have distilled the various common primitives
and parameters to describe these components and their ports.
In addition, this library provides wireless channel models
with different radio propagation models (e.g., indoor attenu-
ations and urban attenuations), channel fading models (e.g.,
Gaussian fading and Rayleigh fading) and bit error rates un-
der different modulation schemes (e.g., BPSK and QPSK).

Environment Model Library. This library serves as the
bridge between the continuous-time domain and the event-
triggered time domain. On one hand, physical environments
usually exhibit continuous dynamic behaviors. For example,
temperatures, speeds and air pressures are usually described
by differential equations according to their corresponding
physical laws. On the other hand, algorithms and protocols
in WSNs are usually event-driven and exhibit discrete dy-
namic behaviors. This library provides modules to exchange
information between these two domains.

The proposed MBSD framework is developed using IBM
Rational Rhapsody 7.6 [7]. All event-triggered-time compo-
nents are modeled in SysML using the Rational Harmony for
Systems Engineering profile (HarmonySE.sbs) and the

SysML profile (SysML.sbs). Their behaviors are modeled
by statecharts and primitive operations that are implemented
in C/C++. All continuous-time components are modeld in
Simulink or Modelica, which are then integrated with SysML
using the Simulink profile (Simulink.sbs). Continuous
data are passed through flow ports, while events and discrete
data are exchanged via rapid ports.

2.2 System Design Flow
Based on the MBSD framework, we propose a system de-
sign flow (Figure 2) to compose both event-driven-time and
continuous-time modules, with support for trade-off analy-
sis, design space exploration and interactive simulations.

System
Specifications

WSNs Model
Libraries (SysML)

Environment Models
(Simulink/Modelica)

Control System
Models (Simulink/

Modelica)

<<SimulinkBlock>>

Simulink to SysML
Transformation

Model Integration (BDD/
IBD/Parametric Diagrams)

SFunction/Simulink
Model Generation

<<StructuredSimulink
Block>>

SFunction and
Simulink Model

C/C++ Source
Codes

Matlab/Simulink
Simulations

C/C++ Codes
Generation

Statecharts
Animations

Interative
Simulations

Panel Diagrams

Optimization Tools
or Parametric

Diagram Solvers

Figure 2: System Design Flow for Model Integration

WSN applications are developed by composing proper mod-
ules from the model libraries according to their system spec-
ifications, which specify their functionality, performance re-
quirements, environments, hardware platforms, algorithms
and protocols used in the systems, etc.

After all components have been composed using the Block
Definition Diagrams (BDDs), Parametric Diagrams and In-
ternal Block Diagrams (IBDs) in SysML, the complete sys-
tem models can be used in the following three ways.

Trade-off Analysis and Design Space Exploration. Each
component can be characterized with quantities that specify
its performance (e.g., delay, reliability, accuracy, response
time and energy consumption), design parameters (e.g., sleep
interval, transmission power and back off period) and com-
ponent properties (e.g., cost and weight). The performance
can be empirical results or statistical expectations based on
mathematical models. Its relationship to the component prop-
erties and design parameters of itself and its subcomponents
can be specified in Parametric Diagrams, which can be solved
by Parametric Diagram solvers.

Rational Rhapsody provides the Parametric Constraint Eval-
uator (PCE) in the PCE profile (PCE.sbs), which evaluates
Parametric diagrams using a computer algebra system such
as MAXIMA or MATLAB Symbolic Math Toolbox to solve

the mathematical expressions. The analytic results can be
fed back to the design specification by instructing PCE to
update the model. Due to the reusability and flexibility of the
MBSD framework, design alternatives can be developed in
a plug-and-play fashion, and their Parametric Diagrams po-
tentially need only slight modifications. By evaluating these
Parametric Diagrams using PCE, trade-off analysis can be
carried out between these design alternatives.

In addition, Parametric Diagrams can be imported to multi-
criteria optimization tools, such as the IBM ILOG CPLEX
Optimizer, to calculate the optimal values for design param-
eters. These tools can also replace PCE for efficient trade-off

analysis for complex hybrid systems.

Simulate in Matlab/Simulink. The Simulink profile offers
the «StructuredSimulinkBlock» stereotype that can
be applied to a SysML block to create a Simulink simulation
environment. Other SysML blocks and Simulink blocks can
be contained as subcomponents in this Simulink structure
block, and the compositions can be specified in IBDs. From
this Simulink structure block, we can generate a Simulink
source file (xxx.mdl) in which all SysML blocks in Ratio-
nal Rhapsody are transformed into a single S-function and
all Simulink blocks remain the same. After that, we can sim-
ulate the whole system in Matlab/Simulink. This simulation
method is useful for performance study.

Simulate in Rational Rhapsody. C/C++ source codes for
the whole system model can be generated directly from the
MBSD framework, which can be used to simulate the whole
system in Rhapsody. Two technologies are available for
model validation: statechart animation and interactive sim-
ulation. Statechart animation enables us to validate system
models by tracing, and debug system designs at the design
level rather than the source code level, by actually execut-
ing system models and animating various SysML statechart
diagrams. While models are running, we can observe how
they react to events and transit their states accordingly in the
animated statechart diagrams in quasi-real time. In addition,
we can also inject events manually to simulate exceptions.
Interactive simulation enables us to design GUIs in a drag-
and-drop fashion using the components provided in Panel
Diagrams. By wiring these GUI components with the states
and attributes of SysML blocks, we can observe their values
and modify the configurations interactively in the runtime
without recompiling the models. These are done graphically
and no programming is needed. This simulation method is
useful for system debug and validation.

3. SYSTEM COMPONENT MODELS
Modeling WSNs is generally a complex task due to the wide
variety of WSN applications, the heterogeneity of physical
platforms, and the complex interactions with their physical
environments. In order to enhance the reusability, it is imper-
ative to identify primitive function components in different
layers and the interfaces for them to interact with each other.
In this section, we describe the main modules for physical

platforms, the MAC layer, wireless channels and physical
environments in detail.

3.1 Modeling Wireless Sensor Networks
Sensor motes (wireless routers or base stations) consist of
physical platforms and softwares (i.e., algorithms and pro-
tocols), communicating through wireless channels. Sensor
motes provide ports to get the clear channel assessment (CCA),
query environment phenomenon data, register themselves to
the wireless channel component and send/receive packets.

3.1.1 Physical Platforms
A physical platform is composed of four parts: battery, CPU,
sensor and transceiver. A typical composition of a physi-
cal sensor platform is shown in Figure 3. During the initia-
tion stage, each mote needs to register itself to the wireless
channel component through the pRegMote port, with its
ID, physical position and transmission power/range. Mote
mobility is supported by updating its physical position pe-
riodically using updatePhyPosition(), the frequency
of which is given by sampleRate. The pSetTxPower
port enables upper layers to set the transmission power/range
of its transceiver, which is required by many power-adaptive
or cross-layer protocols. When a packet has been sent by the
transceiver (an event received from pChSendDone), it will
notify its MAC layer through pMACSendDone. Other ports
are implemented by its internal subcomponents.

Each subcomponent has the cost and weight attributes
which specify its cost and weight for design optimization
and trade-off analysis. Furthermore, every component, in-
cluding the physical sensor platform itself, is modeled as an
active object in Rational Rhapsody, which means that it has
its own thread of control and event queue, through which it
processes its incoming events.

Battery. This component models the power supplies of sen-
sor motes, wireless routers and base stations. Its capacity
is specified by the capacity attribute. The amounts of
energy consumed by the sensor, CPU and transceiver are re-
ceived through pConsumption, which are used to update
its capacity. If the remaining capacity falls below the thresh-
old defined by the threshold attribute, it means the sen-
sor mote has run out of battery and thus an event evDead
is broadcasted to other components through pDead. The
physical sensor platform will forward this event to compo-
nents in upper layers. The isInfinite attribute can spec-
ify if a stable external power supply is available. If its value
is true (e.g., for wireless routers and base stations), the
evDead event will never be generated.

CPU. This component models the control logic unit of phys-
ical platforms. Its power levels in the active mode and sleep
mode are specified by activePower and sleepPower,
respectively. Although several other modes with different
power levels are possible (e.g., the standby mode and differ-
ent working frequencies), we only consider these two main
modes, because the differences between energy consump-

tions in these modes and in the active mode are trivial. In
addition, it is quite complex (if not impossible) to model the
transitions between them, and we do not want to dive into
too much details in the hardware level.

The CPU component implements the pMACMoteCtrl port,
which enables upper layers to control the power states of the
physical sensor platform. An evMACMoteCtrl event sent
by upper layers can specify the component to be controlled
(i.e., sensor, radio or mote) and its new power state (i.e.,
on or off). When this event is received, the CPU compo-
nent transits its state accordingly and forward this event to
the sensor and transceiver through pMoteCtrl. The CPU
component will transit to the sleep mode if and only if the
evMACMoteCtrl event from upper layers indicates that
the whole sensor mote should transit to the low power mode.
Even if both the sensor and transceiver have transited to the
sleep mode, the CPU still need to stay in the the active mode
to execute the algorithms and protocols in upper layers.

Periodically the CPU sends an evConsumption event via
pConsumption to the battery component with the energy
consumption in this period, the frequency of which is given
by batUpdateRate. If an evDead event is received from
pDead, it will transit to the termination state.

Sensor. Each sensor has three power states, whose power
levels are given by sleepPower, standbyPower and
activePower, respectively. Similarly, it sends the energy
consumption information to the battery component periodi-
cally and transits to the termination state if an evDead event
is received. If an evMoteCtrl message is received from
the pMoteCtrl port and it is the target, it will transit its
power state accordingly.

Each sensor can provide a certain type of service, which is
identified by the serviceType attribute, to get the in-
formation about the phenomenon in the environment. Its
quality of service is specified by maxMeasurableValue,
minMeasurableValue, accuracy, responseTime
and threshold for component selection and trade-off anal-
ysis. When the sensor is in the standby mode, it samples the
environment periodically by sending a query evEnvDataQ
to the environment component through the pEnvDataQ port,
the frequency of which is specified by the sampleRate
attribute. When the reply evEnvDataR that contains the
phenomenon information is received via the pEnvDataR
port, it will compare the value of the information with its
threshold. If this value exceeds its threshold, it will generate
a measurement that is sent to upper layers through the the
pSensorOutput port. In addition, the sensor transits to
the active mode, and the energy consumption for processing
the measurement is sent to the battery component. This con-
sumption needs to be sent separately because the time for the
sensor to stay in the active mode is quite short, compared to
the value of batUpdateRate.

A typical commercial sensor mote usually contains several

different types of sensors. For instance, the ITS400 sensor
board for iMote2 [3] provides accelerometer, temperature,
humidity and light sensors. This can be modeled by speci-
fying the multiplicity of the sensor component in a physical
sensor platform. Each sensor component will process the
messages from upper layers and the environment component
based on its serviceType attribute.

Transceiver. Each transceiver has four power states, whose
power levels are given by sleepPower, standbyPower,
txPower and rcvPower, respectively. To support the
Unit Disk Graph (UDG) model, the txRange attribute can
specify the transmission range. Similarly, the transceiver
sends the energy consumption information to the battery pe-
riodically and transits to the termination state if an evDead
event is received. In addition, it will transit its power state
accordingly if an evMoteCtrl message is received.

If an evMACCCAQ query is received from the MAC layer
through pMACCCAQ, which requires to poll the channel to
get the CCA information, the transceiver will forward this
query with the mote ID to the wireless channel component
via pCCAQ. The reply evCCAR that contains the strength
of the strongest signal in the channel near this mote is re-
turned by the wireless channel component through pCCAR.
The transceiver compares this signal strength with its car-
rier sense threshold (specified by the CCAThreshold at-
tribute) and sends the result (true or false) to the MAC
layer through pMACCCAR.

If an evMACSend request that contains the packet to be sent
is received from the MAC layer through pMACSend, the
transceiver will forward this packet to the wireless channel
component through pChSend. Furthermore, the amount of
energy consumed to send this packet is sent to the battery
component. If an evChReceive event that contains the
packet forwarded by the wireless channel component is re-
ceived from pChReceive, the transceiver will check the
received signal strength (RSS) and the destination of the
packet. If it is the destination and the RSS exceeds its receive
sensitivity (specified by rcvThreshold), it will forward
this packet to the MAC layer through pMACRcv. Otherwise,
this packet will be dropped. Similarly, the energy consump-
tion for packet processing is sent to the battery component.

3.1.2 MAC Layer Components
A MAC layer component provides the ports for upper layers
to send and receive packets, set the transmission power of
the transceiver and control the power states of the physical
sensor platform. To fulfill these functions, the ports used to
interact with the physical sensor platform are also provided.
The basic MAC layer component defines three parameters
for trade-off analysis and optimization: delay, energy
and reliability. They are statistical or empirical es-
timations defining the expected delay, energy consumption
and reliability to send a single packet with a pre-defined size
using this MAC protocol. Many works can be used to model
them for different MAC protocols (e.g., [15]), which is out

of the scope of this paper.

The main subcomponents in this layer are described as fol-
lows, some of which are developed based on [10]. A com-
position example is shown in Figure 4.

Low Power Listener (LPL). This component is responsi-
ble to adjust the transceiver’s power state based on chan-
nel activity. Two types of LPL listener are provided in the
MBSD framework. The fixed LPL listener sleeps for a fixed
interval and then polls the channel. If channel activity is de-
tected, it activates the transceiver and stop polling the chan-
nel. After the transceiver becomes free, it starts a timeout
alarm. If no more transceiver activity is detected before
the alarm fires, the transceiver is powered down and chan-
nel polling is enabled again. The periodic LPL listener in-
stead polls the channel all the time, and immediately tran-
sits the transceiver into the sleep state when the channel is
free. The duty cycle can be defined by sleepInterval,
dutyCycle, dutyToSleep and sleepToDuty. More
details are available in [10].

CSMA/CA Channel Access. This component is responsi-
ble to gain the channel access right for a transmission us-
ing the CSMA/CA mechanism. If a query is received from
pCSMACAQ, it starts to poll the channel by sending a request
via pMACCCAQ, whose reply is received from pMACCCAR.
If the channel is busy, it waits for a backoff period that is
randomly selected from the backoff window and then tries
to poll the channel again. This process is repeated until the
maximum number of backoff times has been reached, or the
channel is polled to be free for certain times that is speci-
fied by the contention window size. The result (false or
true, respectively) is returned through pCSMACAR. In slot-
ted CSMA/CA mechanism, the backoff period boundaries
should be aligned with the slot boundaries.

CSMA/CA Sender. This component is responsible to send
a packet using the CSMA/CA mechanism. If a request is re-
ceived from pCtrlSend, it sends a query to to pCSMACAQ.
If the channel access right is gained successfully (true is
returned via pCSMACAR), it forwards this packet through
pMACSend for transmission. Otherwise, it replies false
via pCtrlSendDone. In slotted CSMA/CA, a transmis-
sion is started only at the slot boundaries.

Slot Manager. This component manages the slot sched-
ule for TDMA mechanism. The size of each slot is spec-
ified by slotPeriod. A slot can be marked for trans-
mission, listening or sleep via pMarkSlot, whose confir-
mation is returned via pMarkSlotDone. Other compo-
nents (e.g., the TDMA Sender) can query the slot statuses
via pSlotQ, whose results are returned via pSlotR. Since
all nodes share the clock on the host machine in a simulation,
synchronization is achieved trivially and slot boundaries can
be calculated easily.

TDMA Sender. This component is similar to the CSMA/CA

Sender, except that packets are sent using the TDMA mecha-
nism. For each packet, it sends a query to pSlotQ to get the
slots scheduled for transmission. When the result is returned
from pSlotR, it starts to send in those slots.

Receiver. This component is responsible to broadcast pack-
ets received via pMACRcv to the MAC Controller and other
protocol-specific components through pCtrlRcv for fur-
ther process.

Queue Manager. This component is responsible to buffer
packets in the MAC layer. When a request is received via
pEnMACQueue, it checks its queue size. If the queue is full,
this request is ignored and a reply with false is returned
via pEnMACQueueDone. Otherwise, the packet is added
to the queue and a reply with true is returned. When a
request is received via pQueueRetrieve, the first packet
in the queue is returned via pQueueReturn.

MAC Controller. This component specifies the control logic
of a MAC protocol. Every MAC protocol should extend this
abstract component and implement the protocol-specific be-
haviors. The ports to interact with other components have
been defined, including components in upper layers, the queue
manager, MAC CSMA/CA and TDMA senders, CSMA/CA
channel access, slot manager and the receiver components.

3.1.3 Wireless Channels
Wireless channel components model various wireless chan-
nels with different radio propagation models, channel fading
models and bit error rates (BERs) under different modulation
schemes. Each network instance usually has only one wire-
less channel component, to which all sensor motes, actua-
tors, wireless routers and base stations must register them-
selves with their IDs, physical positions and transmission
powers/ranges.

The basic features of channel components are specified by
channelFrequency, noisePower and bandwidth.
If the simple UDG model is used, the isUDG_Model at-
tribute should be set to be true and the ratio between the
interference range and transmission range should be speci-
fied by ratio4UDG.

Since the channel component interacts with all nodes in a
network instance, it may not be able to process all requests
immediately. Therefore, the channel component uses two
FIFO queues to buffer the received requests: CCAQQueue
for channel polling requests that are received from pCCAQ,
and sendQueue for packet sending requests that are re-
ceived from pChSend.

In addition, the channel component maintains two lists. The
moteList contains the information of all nodes in the net-
work, including their IDs, physical positions and transmis-
sion powers/ranges. During the initiation stage of the sys-
tem, each node in the network will register itself with this
information to the channel component via pRegMote. This

list can be updated using the information contained in the
received packets (e.g., beacon packets) that will be checked
before entering sendQueue. The channelTXList con-
tains the information of all ongoing transmissions in the chan-
nel, including the physical positions and transmission pow-
ers/ranges of the senders, the start time-stamps and their re-
quired transmission times that are calculated based on the
packet sizes and the channel bandwidth. All finished trans-
missions will be removed from this list by examining it peri-
odically, the frequency of which is given by updateRate.
This list is essential for the evaluation of CCAs and BERs.

The channel component should model different radio prop-
agation models, which are empirical mathematical formula-
tions for the characterization of radio wave propagation as a
function of frequency, distance and other conditions. Every
channel model should extend the abstract channel compo-
nent and implement the getRSS() operation that calculate
the RSS at one node for a certain signal. For example, the
ITU Indoor Propagation Model [9] that estimates the path
loss inside a room or a closed area inside a building delim-
ited by walls of any form is formally expressed as follows:

LossdB = 20 log f + N log d + P f (n) − 28

where f is the signal frequency (unit: MHz), d is the dis-
tance (unit: meter), n is the number of floors between the
sender and the receiver, and N and P f (n) are the distance
power loss coefficient and floor loss penetration factor that
are defined in [9], respectively. In getRSS(), LossdB is
computed and subtracted from the transmitted signal strength.

Furthermore, in order to estimate the BER, various chan-
nel fading models and modulation schemes should be mod-
eled as well. Every channel model should implement the
getBER() operation inherited from the abstract channel
model. In our case study, we consider the Rayleigh fad-
ing [14] that is a useful model when there is no dominant
propagation along a line of sight between the transmitter and
receiver, because it is viewed as a reasonable model for tro-
pospheric and ionospheric signal propagation as well as the
effect of heavily built-up urban environments on radio sig-
nals. If BPSK modulation scheme is used, the BER can be
calculated as:

ber =
1
2

1 −
√

Eb/N0

Eb/N0 + 1


where Nb is the transmitted signal strength, and N0 is the
summation of the noise power and interference from other
ongoing transmissions in the channel.

If sendQueue is not empty, the channel component will
process the first packet in the queue by calculating the RSS
and packet loss probability (PER) for the destination. Then it
will forward/broadcast this packet with the RSS and PER via
pChReceive, or discard this packet according to its PER.
Meanwhile, a new entry is inserted to channelTXList,
and a notification is sent to the sender via pChSendDone.

The CCA is estimated by iterating channelTXList to get
the strength of the strongest signal at the node sending this
CCA query, and the value is returned via pCCAR.

3.2 Modeling Physical Environments
Environment phenomena (e.g., temperature and humidity)
usually exhibit continuous dynamic behaviors, which are typ-
ically described by differential equations according to their
physical laws. Meanwhile, different sensors can have differ-
ent measurements of the same phenomenon based on their
positions and the phenomenon propagation model. The main
components in this library are described as follows.

Environment. This component models the propagation of
the information that are received from the phenomenon com-
ponent via pPhnmData. It accepts evEnvDataQ queries
from sensors via pEnvDataQ, computes the phenomenon
values based on the propagation model and the distances be-
tween sensors and the phenomenon, and returns the results
to sensors via pEnvDataR. The 3D uniform propagation
model and UDG model are supported. Several environment
components can be composed in a network instance for dif-
ferent environment regions. For example, two such compo-
nents are included in our case study with one for each room.

Phenomenon. This component serves as the interface be-
tween the continuous-time domain and the event-driven-time
domain. The basic phenomenon component periodically calls
the updatePhnmData() operation and sends the new in-
formation to its environment component via pPhnmData,
the frequency of which is specified by sampleRate. Every
phenomenon component should extend this abstract compo-
nent by implementing updatePhnmData() that prepares
the phenomenon information in the format required by the
environment component. In addition, they also need to de-
fine the flow ports through which the outputs of the numeri-
cal solvers for differential equations can be received.

Modeling continuous behaviors. The continuous-time dy-
namic behaviors are actually modeled in equation-based mod-
eling languages/tools. The outputs of their solvers are for-
warded to SysML models through flow ports. The MBSD
framework currently supports Matlab/Simulink and Model-
ica. Simulink models should be first built using the Embed-
ded Coder in Matlab to generate C/C++ source codes, and
then imported as SysML blocks to Rational Rhapsody by ap-
plying the «SimulinkBlock» stereotype provided in the
Simulink profile. The input and output flow ports of the im-
ported SysML blocks are generated automatically. Model-
ica models need to be transformed to Simulink models first.
This function is available in many Modelica development
tools, such as Dymola [4].

4. CASE STUDY
The MBSD framework proposed in this work is intended to
provide a reusable and extensible mechanism for system de-
sign optimization, trade-off analysis, validation/verification
and performance simulations. In this section, we present a

simple building thermal control system as the case study to
demonstrate the composability, reusability and power of the
MBSD framework. Due to the limited space, only the simu-
lations in Matlab/Simulink are provided here.

4.1 Building Thermal Control System
A building thermal control system is responsible to control
the temperature inside a building so that people can feel
comfortable and equipments can work in a safe condition
inside the building. In addition, it also needs to reduce the
energy consumed by heaters and air conditioners (ACs).

In this case study, we consider a simple building that con-
sists of two large rooms: the living room for people and the
data center room for computer systems. Each room has a de-
sired temperature, which is usually 22 ◦C and much higher
than the environment temperature in the winter. Therefore, a
heater is needed in the living room to generate warmth. On
the other side, the temperature in the data center will natu-
rally rise because the large amount of electrical power used
by the computer systems will heat the air. Consequently, an
AC is needed in the data center to remove the heat and keep
the temperature at the desired level.

An efficient way to reduce the energy consumption is to use
the heat emitted by the computer systems to heat the liv-
ing room through a pipe. A central control system decides
when the heater, AC and pipe should be turned on or off, de-
pending on the current room temperatures. One temperature
sensor mote is deployed in each room, which sends the room
temperature to the control system in the base station through
the wireless channel. The commands from the control sys-
tem are sent to the heater, AC and pipe directly.

In this case study, we assumed the IEEE 802.15.4 unslotted
CSMA/CA mode [8] is used as the MAC protocol, and both
the two sensors and base station can communicate with the
personal area network (PAN) coordinator directly. The com-
positions of the main components are introduced as follows.

4.1.1 Physical Platforms
The temperature sensor motes, base station and PAN coordi-
nator can be composed using components from the physical
system model library. The internal composition of a tem-
perature sensor mote is shown in Figure 3. The base station
and PAN coordinator can be composed in the similar way
but without the sensor component. The attributes of each
component must be set to reflect its properties.

4.1.2 IEEE 802.15.4 MAC Protocol
The IEEE 802.15.4 standard defines a non-beacon contention-
based channel access mode. When a reduced-function de-
vice (RFD) wants to send a packet, it simply transmits this
packet using the unslotted CSMA/CA mechanism to the PAN
coordinator. When the coordinator wants to send packets to
a RFD, it stores the packets first and waits for that RFD to
contact and request data. A RFD may make contact by trans-
mitting a MAC command requesting the data to the coordi-

Figure 3: Internal Composition of Physical Sensor Motes

nator using the unslotted CSMA/CA mechanism as well, at
an application-defined rate. When the coordinator receives
this request, it will send back an acknowledgement first. If
packets are pending for this RFD, the coordinator starts to
transmit these packets. Otherwise, a data packet with zero-
length payload is sent back to this RFD to indicate that no
packet is pending.

The MAC protocol for each node can be composed using
components from the network model library. The internal
composition of the MAC protocol for the PAN coordinator
is shown in Figure 4. Both the sensor motes and base sta-
tion act as RFDs, whose MAC protocols can be composed
in the similar way but without the queue manager compo-
nent, and the PAN controller component is replaced with a
RFD controller component.

Figure 4: Internal Composition of the IEEE 802.15.4 Un-
slotted CSMA/CA Mode for the PAN Coordinator

4.1.3 Building Thermal Model in Simulink
The control system and building thermal dynamics are mod-
eled in Simulink as shown in Figure 5.

The control system decides when the heater, AC and pipe
should be turned on or off based on the following rules:

• Heater: turn on if TLR <= 20 and turn off if TLR >= 24
• AC: turn on if TDC >= 24 and turn off if TDC <= 20

Cost

3

T_LR_Out

2

T_DC_Out

1

Living Room

Pipe_In

Heater_On/Off

C_LR

T_LR

Desired Indoor

Temperature

22
Data Center

Pipe_On/Off

A/C_On/Off

C_DC

Pipe_Out

T_DC

Control Center

Enable

T_LR

T_DC

T_Goal

C_Pipe

Pipe_On/Off

A/C_On/Off

Heater_On/Off

T_DC_In

3

T_LR_In

2

Enable

1

Figure 5: Simulink Model for the Thermal Control Block

• Pipe: turn on if TLR <= 22 and turn off if TLR >= 24

where TLR and TDC are the measured temperatures of the liv-
ing room and data center, respectively. Here, a variance of
2 ◦C around the desired temperature is allowed to avoid os-
cillations. The pipe is turned on when TLR <= 22 to reduce
the usage of the heater.

The thermal models for the living room and data center are
developed based on the Thermal Model of a House provided
as a demo in Simulink. It is modified by considering the ef-
fects of the pipe, AC and heat transfer efficiency. The details
are omitted due to the limited space.

4.1.4 Overall System Composition
After all required components have been composed using the
model libraries, they can be connected together to model the
whole application. The overall composition of the building
thermal control system is shown in Figure 6.

Figure 6: Internal Composition of the Building Thermal
Control System

The channel component with the ITU indoor propagation
model, Rayleigh fading and BPSK modulation scheme is se-
lected for this system, because the two sensors are deployed
in different rooms, which means they are blocked by walls
and thus with no line-of-sight between them. The connec-
tions between the channel component and the node compo-
nents are not shown here for clarity. Ports with the same
name (indicated by the same color) should be connected.

The SL_ControlSystem component is used to import
the building thermal dynamics model in Simulink by apply-
ing the «SimulinkBlock» stereotype. The Observer
component stores the outputs of the Simulink solver, which
are used for debug and validation in interactive simulations.

4.2 Evaluation
The Simulink source file for the overall system is generated
from the Simulink structure block in Figure 6 automatically,
which is then simulated in Matlab/Simulink. The following
four scenarios are considered in the simulations:

Wireless + No Pipe. The room temperatures are collected to
the base station using the WSN, but the pipe is never turned
on. Each sensor wakes up to measure once every 5 seconds.

Wired + Pipe. The room temperatures are fed back to the
control center directly, and the pipe feature is enabled. This
scenario is totally modeled in Simulink and used as the ref-
erence to study the impacts of the delays in the WSN.

Wireless + Pipe (5s). The room temperatures are collected
to the base station using the WSN, and the pipe feature is
enabled. Each sensor wakes up to measure the temperature
once every 5 seconds.

Wireless + Pipe (60s). This scenario is quite similar to the
above one, except the sensor sleep interval is 60 seconds.

The temperatures of the environment, the heater, the AC and
the air flow from the computer systems are 10 ◦C, 50 ◦C,
4 ◦C and 50 ◦C, respectively. The air flow rate of the AC,
the heater and the computer systems are 2 kg/s, 2 kg/s and
0.5 kg/s, respectively. We assume 50% of the air flow from
the computer systems can be piped out and 30% of their heat
can be delivered to the living room. Other parameters used in
the Simulink model are the same as those used in the demo
of Thermal Model of a House. The MAC protocol uses the
default parameter values specified in [8].

The initial temperature of both rooms is 20 ◦C. The simula-
tion results for the first 2 hours of the room temperatures and
cost are shown in Figure 7, and the working statuses of the
AC, heater and pipe are shown in Figure 8. The results indi-
cate that the pipe is working efficiently, which can decrease
the working time of the heater and AC, and thus reduce the
total electricity cost by 24%. When the sensors wake up
to measure the temperature once every 5 seconds, the im-
pacts of the delays on the system performance are negligi-
ble. However, if the interval between two successive mea-
surements is increased to 60 seconds, the room temperatures
may cross the desired boundaries, which should be avoided.
This can be used to study the trade-off between the system
performance and energy efficiency of the sensor motes.

5. CONCLUSIONS AND FUTURE WORK
In this work, we have proposed a model-based system design
framework for WSNs, which can model both continuous-
time and event-driven components, and integrate them by
composition for trade-off analysis, design space exploration
and interactive simulations. SysML, Simulink and Model-
ica that are standard modeling languages in the industry are
used to develop the model libraries, by taking advantage of
the powers of each language. The main component mod-

0 600 1200 1800 2400 3000 3600 4200 4800 5400 6000 6600 7200
19

20

21

22

23

24

25
Data Center Temperature

0 600 1200 1800 2400 3000 3600 4200 4800 5400 6000 6600 7200
19

20

21

22

23

24

25
Living Room Temperature

0 600 1200 1800 2400 3000 3600 4200 4800 5400 6000 6600 7200
0

10

20

30

40

50

60

70

Time

Total Electricity Cost

Wireless + No Pipe Wired + Pipe Wireless + Pipe (5s) Wireless + Pipe (60s)

Figure 7: Room Temperatures and Total Electricity Cost

0 600 1200 1800 2400 3000 3600 4200 4800 5400 6000 6600 7200

OFF

ON

A/C On/Off

0 600 1200 1800 2400 3000 3600 4200 4800 5400 6000 6600 7200

OFF

ON

Heater On/Off

0 600 1200 1800 2400 3000 3600 4200 4800 5400 6000 6600 7200

OFF

ON

Time

Pipe On/Off

Wireless + No Pipe Wired + Pipe Wireless + Pipe (5s) Wireless + Pipe (60s)

Figure 8: Working Statuses of the A/C, Heater and Pipe

els for physical platforms, the MAC layer, wireless channels
and physical environments are described in detail. A hybrid
system is used as the case study to demonstrate the compos-
ability, reusability and flexibility of the MBSD framework.

The MBSD framework can be used as a modeling hub to in-
tegrate other modeling tools and languages. The future work
can follow these two directions. Firstly, multi-criteria opti-
mization tools can be integrated into the MBSD framework,
because the current Parametric Diagram solver can not solve
complex optimization problems efficiently, and the trade-off

analysis should be carried out in a more automatic fashion.
The IBM ILOG CPLEX Optimizer is good candidate for
this purpose. Secondly, the model libraries for the appli-
cation and service layers should be revised to improve their
reusability and flexibility. The accuracy of the models de-
scribed in Section 3 should also be verified by comparing
with a standard simulator for WSNs.

6. REFERENCES
[1] P. Boonma and J. Suzuki. Moppet: A model-driven

performance engineering framework for wireless
sensor networks. The Computer Journal,
53(10):1674–1690, 2010.

[2] E. Cheong, E. A. Lee, and Y. Zhao. Joint modeling
and design of wireless networks and sensor node
software. Intl. Sympo. on a World of Wireless Mobile
and Multimedia Networks (WoWMoM), 2006.

[3] Crossbow. ITS400 Data Sheet.
www.xbow.com:81/Products/productdetails.aspx?sid=261.

[4] Dassault Systemes. Dymola. www.dynasim.se/.
[5] P. Derler, E. A. Lee, and A. Sangiovanni-Vincentelli.

Modeling cyber-physical systems. Proceedings of the
IEEE Special Issue on CPS, December 2011.

[6] C. T. Ee, R. Fonseca, S. Kim, D. Moon, A. Tavakoli,
D. Culler, S. Shenker, and I. Stoica. A modular
network layer for sensornets. USENIX OSDI, 2006.

[7] IBM. IBM Rational Rhapsody Help.
www.ibm.com/software/awdtools/rhapsody/.

[8] IEEE 802.15 TG4. IEEE 802.15.4 Standard.
http://www.ieee802.org/15/pub/TG4.html.

[9] ITU-R. Propagation data and prediction models for
indoor radio communication systems. ITU-R
Recommendations, 2001.

[10] K. Klues, G. Hackmann, O. Chipara, and C. Lu. A
component-based architecture for power-efficient
media access control in wireless sensor networks.
SenSys, pages 59–72, November 2007.

[11] M. M. R. Mozumdar, F. Gregoretti, L. Lavagno,
L. Vanzago, and S. Olivieri. A framework for
modeling, simulation and automatic code generation
of sensor network applications. SECON, 2008.

[12] D. Riley, E. Eyisi, J. Bai, X. Koutsoukos, Y. Xue, and
J. Sztipanovits. Networked control system wind tunnel
(ncswt)- an evaluation tool for networked multi-agent
systems. SIMUTools, 2011.

[13] L. Samper, F. Maraninchi, L. Mounier, and L. Mandel.
Glonemo: global and accurate formal models for the
analysis of ad-hoc sensor networks. 1st Intl. Conf. on
Integrated Internet Ad Hoc and Sensor Networks
(InterSense), 2006.

[14] B. Sklar. Rayleigh fading channels in mobile digital
communication systems part i: Characterization. IEEE
Communications Magazine, 35(7):90–100, July 1997.

[15] B. Wang and J. S. Baras. Performance analysis of
time-critical peer-to-peer communications in IEEE
802.15.4 networks. ICC, pages 1–6, 2011.

