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1. General Problem and Context  

 Cyber-physical systems (CPSs) are systems comprised of interacting physical and 

computational components. In recent years, there has been an increased use of CPSs in high 

risk and uncertain environments (Hartsell et al., 2019). For example, consider the operation of 

an autonomous vehicle in a crowded city. To operate safely, the vehicle must be able to react 

to many different events in an appropriate manner. However, it is not realistic nor feasible to 

explicitly program a response into the vehicle’s software for each one of these events. To 

overcome this challenge, engineers have begun using data-driven techniques such as machine 

learning. This change led to the emergence of learning-enabled components (LECs) in CPSs. 

LECs use existing data to learn how to respond to different types of events. They can be used 

for a variety of different functions in CPSs, including perception and control.  

 The traditional principle of “separation of concerns” has caused differences to emerge 

across engineering disciplines in terms of modeling languages and software tools used (Ghezzi, 

Jazayeri, & Mandrioli, 1991). However, the design of CPSs with LECs is complex and requires a 

greater amount of coordination between disciplines. The main problem is that there is a 

current lack of tool support for the design of CPSs with LECs on a central and consolidated 

platform that supports all of the necessary functions: architectural modeling, data collection, 



LEC training, LEC evaluation and verification, modeling and analysis of safety cases, and system 

software deployment.  

 

2. Description of the Specific Human/Cyber-Physical System Problem  

 The use of CPSs in safety-critical or mission-critical applications requires establishing 

that the system will operate correctly in response to a variety of different situations with a 

fairly high level of confidence. This practice of establishing an acceptable level of safety is called 

safety assurance, and it is one of the most important factors to consider in the design of CPSs 

with LECs. One of the most common techniques used for safety assurance is the development 

of safety cases, which are structured arguments that represent the safety of a particular 

system. Safety cases are typically structured around a top-level claim (i.e. “The system is safe 

because…”), and followed by evidence to support that claim. Goal Structuring Notation (GSN) is 

a type of graphical notation that is often used to write safety cases in a readable and 

standardized format. Ensuring the safety of autonomous systems is critical for gaining public 

trust. If the public lacks confidence that autonomous systems will perform at least as well as 

human-operated systems, it is unlikely that autonomous systems will ever become widespread.   

 Developing adequate safety cases, and thus establishing a high level of safety assurance, 

requires an understanding of how the particular system will interact with its environment. This 

includes both the interactions with the humans that are using the system, and if it operates in a 

public space, the humans in the surrounding area. Thus, the primary human/cyber-physical 

system problem in this project is developing safety cases that adequately address the ways in 

which a system will be interacting with the humans in its environment.  



 

3. The Challenges of Reaching a Functional System  

 Because LECs rely on learning relationships from data, the primary challenge of reaching 

a functional CPS with LECs is acquiring a strong data set to use for training. For the example of 

autonomous vehicles, this training data would likely be acquired by attaching sensors to a 

human-driven car and driving that car in a variety of settings. The sensors would collect data 

about the car’s surroundings and the human driver’s reaction to different events. When 

translated into a training set, this would likely result in thousands, or even millions, of data 

points with many features (a measurable property of the event being observed). 

 However, gathering a large quantity of data is not enough; the data must also be high 

quality. This means that it should be representative of new cases that the system should be 

able to generalize to after learning. To achieve this, relevant features must be chosen carefully 

and high quality measurements must be taken to avoid errors and outliers.  

 

4. The Technical Problem and the Research Setting 

 The research took place at the Institute for Software Integrated Systems at Vanderbilt 

University under Dr. Gabor Karsai. The project, called Assured Autonomy, has several teams 

working on different aspects relating to the engineering of autonomous systems. The team that 

I was involved in is developing the assurance-based learning-enabled CPS (ALC) toolchain. The 

ALC toolchain is a development environment that addresses the lack of tool support for the 

end-to-end design of CPSs with LECs. The toolchain supports all of the necessary tasks including 

architectural modeling, data collection, LEC training, LEC evaluation and verification, modeling 



and analysis of safety cases, and system software deployment. Additionally, the output from 

each of these tasks can be easily stored and accessed later for traceability and reproducibility.  

 My specific focus within the ALC toolchain was on the data collection method, and I 

worked directly with graduate student Charles Hartsell. We were focused on the use of the 

toolchain for designing an unmanned underwater vehicle (UUV) tasked with following a 

pipeline along the seafloor. This application provides a simple use case to develop the toolchain 

and demonstrate its numerous functions. The task involves following the pipe at an appropriate 

distance in varying conditions, including obstruction and water current. The control and 

perception of the UUV is controlled by LECs, and thus requires data collection and training. 

Prior to my work this summer, training set data was generated by explicitly specifying each 

desired variation of a given feature, then performing a cross product to return each unique 

combination of feature values. For example, if the desired features to vary were pipe bend 

angle and water current, values for each feature would be specified (e.g. [15 degree bend, 30 

degree bend], [water current, no water current]) and a cross product would be performed (e.g. 

[15 degree bend, water current], [15 degree bend, no water current], [30 degree bend, water 

current], [30 degree bend, no water current]). However, the problem with this method is that 

more than just two features with many variations will need to be considered, resulting in 

thousands of unique experimental conditions to generate an adequate training set. Collecting 

this much real-world data is time-consuming, expensive, and not realistic.  

 My task for the summer was to improve the data collection method to allow for 

collection of large and high quality training sets in an efficient manner. To achieve this, I 

integrated Scenic into the toolchain to support generation of synthetic data. Scenic is a domain-



specific scenario description language that allows the programmer to specify “scenes” of 

interest (Fremont et al., 2019). Scenes consist of physical objects and their properties, 

geometric relationships between those objects, and constraints and probability distributions on 

those objects. The Scenic syntax makes specification of scenes achievable with only a few lines 

of simple code. Furthermore, the ability to specify probability distributions over objects allows 

for the generation of thousands of iterations of a single experimental configuration using the 

same code. The second part of this task was to interface with the Gazebo simulator to provide 

functionality for generating data synthetically rather than in a real-world experiment. Once the 

Scenic scenes were created, they could be loaded into Gazebo and experiments could be run in 

the simulation environment. In the context of gathering training data, experiments consist of 

operating the UUV in the environment generated by Scenic while it collects information about 

its surroundings (e.g. distance to pipe, distance to seafloor, presence of obstacles) through 

sensors. Each experiment can be run with a different iteration of the Scenic scene, where each 

feature of the scene is varied slightly in each iteration. Thousands of experiments can be run to 

generate a large data set to train the LECs on. This new method for data collection addresses 

the primary challenge of reaching a functional system: the collection of large amounts of 

meaningful training data.  

 

5. Future Research  

 The most pressing area for future research is the development of improved safety 

assurance methods. This would likely take form in improved techniques for quantitative 

evaluation of safety case GSN arguments. Improved confidence in the safety of CPSs with LECs 



is necessary for increasing the public’s trust in such systems. Without public trust, there will 

never be widespread use of these systems and society may never be able to benefit from the 

technology.  

 A second area for future research is using Scenic with simulators other than Gazebo, 

such as Carla. Other applications of the toolchain may be more suitable for different simulators, 

so providing functionality for a wide variety of simulators would lead to greater flexibility.  
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