Modeling and Switching Control of an Input Delayed Hybrid **Exoskeleton for Lower-limb Function Restoration**

Zhiyu Sheng¹, Kang Kim^{1, 2, 3, 5} and Nitin Sharma^{1, 2, 4}

¹Department of Mechanical Engineering and Materials Science, University of Pittsburgh School of Engineering. ²Department of Bioengineering, University of Pittsburgh School of Engineering. ³Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine and Heart and Vascular Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center. ⁴Joint Department of Biomedical Engineering, North Carolina State University.

⁵McGowan Institute for Regenerative Medicine, University of Pittsburgh and University of Pittsburgh Medical Center.

Introduction

Spinal cord injuries (SCI) or stroke result in impaired limb functions and mobility disorders.

Hybrid exoskeleton: a wearable robotics device for function restoration via **functional electrical** stimulation (FES) + electrical motors.

Control Design and Experiments

Block diagram of the control design and the hybrid dynamical system model

FES activates the paralyzed or paretic muscles. Users gain training and therapeutic benefits. However, quick onset of muscle fatigue due to non-physiological muscle recruitment limits the FES applications.

Electrical motors provide more predictable torque to assist the movements. Less stimulation is required due to a shared workload with the electrical motors and FES-induced muscle fatigue can be maintained in a desired range.

Modeling of the human-in-the-loop wearable robotics system considers:

the electromechanical delay of the muscle's torque response to a stimulation input;

- agonistswitched activations each IN antagonist muscle pair actuate joint to movements in both directions;
- **Fig. 1a**: The closed-loop controller integrates two control modes:
 - (I. non-fatigued) a PD-based robust controller with delay compensation vectors to control FES + electrical motors;
 - (II. fatigued) a smooth variable structure controller (VSC) to control electrical motors.

Fig. 1b: Switches between control mode I and II follows the flows and jumps of the hybrid dynamical system model.

Control of a hybrid exoskeleton that integrates FES and electrical motors

A sit-to-stand task assisted the by hybrid exoskeleton.

- formulation of a hybrid dynamical system to integrate two control modes that activates in turns.
- Stability analysis via a multiple Lyapunov functional (MLF) approach

Conclusions: Results of the Stability Analysis and Experiments

Online trajectory planning based on virtual constraints from a normal sitto-stand profile.

Figure 3. Performance of the hybrid exoskeleton during repeated sit-to-stand experiments. $\xi =$ 1 (shadowed region) indicates that FES inputs are active while $\xi = -1$ indicates that there is no FES contribution. (Muscles are at rest and recovering toward a pre-fatigue stage.)

the MLF condition

Control accuracy of the hybrid exoskeleton in a sit-to-stand task: knee joints **RMSE < 5.00°**.

hip joints **RMSE < 1.00°**.

Muscle fatigue was maintained in a desired range by intermittently activating two control modes. The decision making of activating either of the control mode depends on:

pre-defined fatigue and recovery thresholds;

attracting regions of control mode I and II;

Imposed MLF stability conditions.