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costs increase by only 3.13% (3300 USD)

e Develop joint pricing, vehicle routing, and vehicle charging policy

e Optimal static policy guarantees stability of the queues, however, is oblivious to the stochastic
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e A real-time control policy can perform better in the stochastic environment e Case Study in San Francisco, CA: joint siting of stations reduces ~20
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Key observation: AMoD will give rise to complex couplings between the power and * Stations are more spatially distributed than present-day siting

transportation networks over a wide range of temporal and spatial scales

Controls: e.g. prices, energy generation schedules

* Low-cost, efficient EVs are more cost-effective despite short range
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*Mid-power charging (20-30kW) is sufficient; reduction in installed 250kW DC fast charging capacity
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e Study competition in electric AMoD systems by comparing the monopoly and

Case Study in Bay Area the duopoly in equilibrium ¥ .
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