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Results: Real-time Control
• Develop joint pricing, vehicle routing, and vehicle charging policy

• Optimal static policy guarantees stability of the queues, however, is oblivious to the stochastic 
events occurring in the dynamic environment

• A real-time control policy can perform better in the stochastic environment

• Due to the curse of dimensionality, intractable to solve for the optimal policy

• Utilize deep reinforcement learning to establish a near-optimal policy

Case Study in Bay Area

• Using real network and demand data, develop and implement RL policy

• 400x shorter queues, 25% less charging costs, increased profits

Improvements with Multi-agent RL

Case Study in Manhattan Area
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Results: Competition in Electric AMoD Systems

• Study competition in electric AMoD systems by comparing the monopoly and 
the duopoly in equilibrium

• Identical competitors can only be in a symmetric equilibrium

• Closed-form bounds quantify the impacts of the competition on the ride 
prices, the profits of the firms, the aggregate demand served and the 
consumer surplus

• Higher correlation between customers’ preferences strengthens the 
competition and boosts the impacts of competition
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0.6 0.8 1 0.6 0.8 1 0.6 0.8 1

0.80 0.42 0.11 0.67 0.29 0 1 1 1

1.44 1.73 2.04 1.25 1.11 1 2.26 2.55 4

0.57 0.32 0 0.39 0.19 0 0.85 0.74 0

2.00 2.95 4.18 1.46 1.22 1 5.89 9.22 16
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Introduction: Autonomous Mobility-on-Demand (AMoD)

Electric AMoD: mode of transportation wherein self-driving, electric vehicles transport 
passengers on demand in a given environment

Couplings between AMoD and the Power Network

Key observation: AMoD will give rise to complex couplings between the power and 
transportation networks over a wide range of temporal and spatial scales

Technical Approach: Multi-commodity Network Flows

Charging demand

Energy storage

Electricity prices

Energy provision

Controls: e.g. vehicle routes, charging schedules

Controls: e.g. prices, energy generation schedules
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Power network

Road network: directed graph 𝐺(𝑉, 𝐸)

Congestion model: capacity constraint on each edge

Augmented network flow model: time and state of charge

LP flow models as power flow surrogates for 
transmission and distribution networks

Interaction between AMoD and power network 
can be optimized as a linear program

Results: Power-in-the-loop AMoD (P-AMoD) in Orange County, CA

Autonomous Mobility-on-Demand (AMoD)

• Uncoordinated electric AMoD causes 
substation overloads (7.98MVAh) and 
voltage violations (24.04 p.u.-h) across 
14 PDNs over an 8-hr commute cycle

• Coordination reduces substation 
overloads by 99.71% and voltage 
violations by 50.28%, while operating 
costs increase by only 3.13% (3300 USD)
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Conclusions
Electric AMoD systems can act as mobile storage units in the power network

• Cooperation results in near elimination of substation overloads and halving of voltage violations 
with a modest cost increase (Orange County, CA case study)

• Reinforcement learning model controls pricing and fleet operations in a stochastic real-time 
environment with reduced queues and charging costs

• Joint optimization of E-AMoD systems with charging station siting reduces total costs, vehicle 
deadhead, peak charging, and fast charging capacity (San Francisco, CA case study)

Results: Electric AMoD Systems with Charging Station Siting
• Planning and operations optimized jointly: station siting, 
heterogeneous fleet sizing, charging, routing, and rebalancing 
solved using LP network flow model

• Case Study in San Francisco, CA: joint siting of stations reduces 
vehicle deadhead travel, peak charging demand, and total fleet 
costs by 10% compared to scaled-up present-day siting baseline

• Stations are more spatially distributed than present-day siting

• Low-cost, efficient EVs are more cost-effective despite short range
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•Mid-power charging (20-30kW) is sufficient; reduction in installed ≥50kW DC fast charging capacity

• Using real network and demand data, 
develop multi-agent RL policy

• 80% increase in profits

• Reinforcement Learning network has good performance, but it’s increasingly difficult to train 
when applied to larger maps, as both the state and action spaces are of dimension Ο 𝑛2

• Multi-Agent RL exploits the locality of the 
process, accelerates training by significantly 
reducing the number of parameters required

Summary of Recent Objectives and Results

• Offline analysis: optimizing P-AMoD and 3-phase power distribution networks in 
Orange County; joint optimization of electric AMoD and station siting in San Francisco

• Online control: deep RL model for real-time control in Bay Area and Manhattan
• Competition: study monopoly vs duopoly equilibria of electric AMoD systems


