
Models of Time for a Computational World
Edward A. Lee∗

∗University of California, Berkeley, eal@eecs.berkeley.edu

Humans have struggled for centuries to develop a good
notion of time. For example, the uniformly advancing fabric
of time that Newton used to describe the dynamics of physical
systems was shattered by Einstein, whose model allows time
to advance at different relative rates, depending on the frame
of reference. From a practical perspective, measurement of
time has historically been the measurement of the position of
a point on the surface of the earth relative to the sun and other
celestial bodies. Indeed, this association makes measuring
time extremely valuable, because of the ability of the solve
the inverse problem; if you know the current time and the
positions of the celestial bodies, then you know your position
on the surface of the earth [6]. In all of these struggles, the
correctness of any notion of time has been judged by its
relation to observable physical dynamic systems.

The world of computation, by contrast, is deeply formal,
and depends far less on a relation to observable physical
dynamic systems. A formal world is rooted in symbols and
axioms (statements that are “true” by definition). In the most
useful formal systems (including all computational systems),
the axioms provide “truth preserving” operations that turn one
“true” statement into another “true” statement. The “truth” of a
statement in a formal world depends on whether it is consistent
with the axioms. The provability of a statement depends on
whether there is a terminating sequence of truth-preserving
transformations that reduces the statement to a set of axioms.
The formal worlds in mathematics and in computing have deep
parallels, for example in the relation between provability and
computability, as developed by Turing and Church.

Working in a formal world has a distinct advantage over
working in the physical world. By constructing axioms and
proofs, we can make statements that are definitively “true,”
invulnerable to any further developments of understanding.
The usefulness of these statements may change depending
on their relationship to physical systems, but not their truth.
In this position paper, I will argue that models of time in
computational systems should be viewed primarily as formal
models, and not be judged primarily by their relationship
to physical dynamic systems. That is, before we attempt

This work was supported in part by the Center for Hybrid and Embedded
Software Systems (CHESS) at UC Berkeley, which receives support from
the National Science Foundation (NSF awards #0720882 (CSR-EHS: PRET),
#0931843 (ActionWebs), and #1035672 (CSR-CPS Ptides)), the U. S. Army
Research Laboratory (ARL #W911NF-11-2-0038), the Air Force Research
Lab (AFRL), the Multiscale Systems Center (MuSyC), one of six research
centers funded under the Focus Center Research Program, a Semiconductor
Research Corporation program, and the following companies: Bosch, National
Instruments, Thales, and Toyota.

to deliver “real-time systems” that are useful, we must first
deliver “real-time systems” that are true. Only if they can be
judged to be true should we evaluate their usefulness.

This perspective contrasts with the dominant view in the
world of “real-time computing,” which is primarily judged
by its ability to deliver computational actions in relation to
physical clocks whose task is primarily to measure the position
of a point on the surface of the earth relative to the celestial
bodies. This world is dominated by scheduling theory, and has
developed many sophisticated and useful techniques [13]. But
these techniques do not deliver truth in an absolute sense.

Thinking of time as a logical and formal notion in com-
putational systems rather than a physical measurement was
eloquently posited by Lamport [9]. This work put emphasis
on consistent views of the state of a system rather than on the
accuracy of the measurement of time. Lamport introduced the
idea that consistency could be guaranteed (it could be “true”)
in certain circumstances, whereas measurements are never
true. He also emphasized the partial ordering of events, rather
than their total ordering, a concept that was then extended
in very interesting ways by many researchers (see [2], [1]).
Purely logical notions of time become more useful (not more
correct) when one can establish a connection with physical
measurement while preserving truth, as done in the field of
hybrid systems, for example [7].

I have previously argued that time needs become part of the
semantics of programs, rather than being merely a measure
of performance [10]. Here, I discuss the form that models
of time should take in the formal systems of distributed pro-
grams. Specifically, I address the issues of precision, causality,
simultaneity, and multiform time.

I. NUMERICAL REPRESENTATION

In any practical computational system, time must be repre-
sented by members of a discrete set. It is naive to simply assert
that a time value is a real number, for example, since with any
fixed digital encoding, a randomly chosen real number is not
representable with probability one. We could just fall back on
what is done to represent physical quantities, where the state-
of-the-art is IEEE double precision floating point numbers.
This is a reasonable choice if time is a measurement, but it is
not reasonable within a formal system, for two reasons.

First, the precision with which time is represented by a
floating-point number depends on its magnitude. Define the
precision p of a time t1 to be p = t2− t1, where t2 is the next
larger representable time. With floating point numbers, p gets
larger as t1 gets larger. Second, floating-point time makes the



notion of simultaneity complex. With floating-point numbers,
given two time values t1 and t2, we may have that t1+t2 = t1.
This would suggest that an event that occurs at time t1 + t2
is simultaneous with an event that occurs at time t1.

Taken together, these problems can result in a caused event
being simultaneous with the causing event. Suppose the caused
event occurs at time t1+t2 and is caused by an event occurring
at time t1. Then as long as t1 remains small, the time of the
caused event will differ from the time of the causing event.
But when t1 gets large enough, they become simultaneous.

The time representation used in the IEEE 1588 standard [4]
does not suffer from this problem, but it does suffer from a
“Y-2k” problem. There are a finite number of representable
times. The model of time used in Ptolemy II solves this by
having an infinite number of representable times, at the cost
that the memory required to store a time value is not bounded
[12]. These are practical tradeoffs that can be evaluated, and
such evaluation can work entirely within a formal system that
preserves “truth” during any manipulations of time.

II. CAUSALITY, SIMULTANEITY, AND SUPERDENSE TIME

Intuitively, we think of an event that is caused by another as
occurring later.1 But how much later? If you push one end of
a rigid rod, how much later does the other end move? A useful
conceptual model must admit the possibility that the caused
event is simultaneous with the causing event. Fortunately,
this possibility is allowed by a superdense notion of time,
introduced by Manna and Pnueli [14]. A superdense time value
is a two-tuple, t = (t1, n), where t1 is metric time and n is an
index. Manna and Pnueli proposed that t1 be real, but given
the argument in the previous section, we would prefer an IEEE
1588 or Ptolemy II representation. The number n is a natural
number, where again it can be practically represented by either
a finite set (e.g. the set of 32 bit ints) or an infinite set (e.g.
the Java BigNum), with evaluable tradeoffs in expressiveness
and memory requirements. Superdense time easily handles the
situation where caused events are simultaneous with causing
events by having the caused event occur at (t1, n1) and the
causing event occur at (t1, n2), where n1 > n2. This solution
is used in the VHDL language for hardware description, and
can be further refined to become more modular.

III. MULTIFORM TIME

To be useful, even a formal model of time often needs
to have some correspondence with physical measurements of
time. Distributed systems accomplish this using a multiplicity
of clocks, each measuring time at a different physical location.
How can these measurements of time coexist with a formal
notion of time? This problem is addressed in the PTIDES
project [3], where a strictly formal notion of time is bound to
physical measurements of time at sensors and actuators.

1In [15], Price and Corry argue that this notion of causality has no
basis in physics. It is a human construct. Fortunately, synchronous fixed-
point semantics and equational languages such as Modelica [5] admit this
possibility.

Physical measurements of time, however, diverge. Time syn-
chronization technologies help [4], [8], but they are imperfect,
which can compromise preservation of “truth” in a formal
system. The PTIDES project resolves this problem by showing
that if the absolute discrepancy between two clocks can be
bounded, then formal operations on time become possible.
The notion of an “absolute discrepancy” is a problematic
one, since it requires itself a physical notion of simultaneity.
You have to be able to simultaneously observe the values
of two physically separate physical clocks, something that
is not physically possible. But it can be approximated, and
given such an approximation, PTIDES provides a formal and
deterministic notion of time that allows for clocks to progress
at different rates, as long as their divergence can be bounded.

Another version of multiform time is given in the modal
models of Ptolemy II [11], where parts of the system can
go into “suspended animation,” where logical time stops pro-
gressing altogether. The passage of time is, in fact, a changing
state of a system. If a subsystem is inactive, its state should
not change. Ptolemy II accomplishes this in a strictly formal
and deterministic way.

I therefore argue that we can and must extend our formal
notions of computation with a formal notion of time. The result
will be not merely useful, but also correct.

REFERENCES

[1] R. Alur and T. Henzinger. Logics and models of real time: A survey.
In J. W. De Bakker, C. Huizing, W. P. De Roever, and G. Rozenberg,
editors, REX Workshop, volume LNCS 600, pages 74–106, Mook, The
Netherlands, 1991. Springer.

[2] M. Broy. Refinement of time. Theoretical Computer Science, 253(1):3–
26, 2001.

[3] J. Eidson, E. A. Lee, S. Matic, S. A. Seshia, and J. Zou. Distributed
real-time software for cyber-physical systems. Proceedings of the IEEE
(special issue on CPS), 100(1):45–59, 2012.

[4] J. C. Eidson. Measurement, Control, and Communication Using IEEE
1588. Springer, 2006.

[5] P. Fritzson. Principles of Object-Oriented Modeling and Simulation with
Modelica 2.1. Wiley, 2003.

[6] P. Galison. Einstein’s Clocks, Poincaré’s Maps. W. W. Norton &
Company, New York, 2003.

[7] T. A. Henzinger. The theory of hybrid automata. In M. Inan and
R. Kurshan, editors, Verification of Digital and Hybrid Systems, volume
170 of NATO ASI Series F: Computer and Systems Sciences, pages 265–
292. Springer-Verlag, 2000.

[8] S. Johannessen. Time synchronization in a local area network. IEEE
Control Systems Magazine, pages 61–69, 2004.

[9] L. Lamport, R. Shostak, and M. Pease. Time, clocks, and the ordering of
events in a distributed system. Communications of the ACM, 21(7):558–
565, 1978.

[10] E. A. Lee. Computing needs time. Communications of the ACM,
52(5):70–79, 2009.

[11] E. A. Lee and S. Tripakis. Modal models in Ptolemy. In 3rd
International Workshop on Equation-Based Object-Oriented Modeling
Languages and Tools (EOOLT), volume 47, pages 11–21, Oslo, Norway,
2010. Linköping University Electronic Press, Linköping University.

[12] E. A. Lee and H. Zheng. Operational semantics of hybrid systems.
In M. Morari and L. Thiele, editors, Hybrid Systems: Computation and
Control (HSCC), volume LNCS 3414, pages 25–53, Zurich, Switzerland,
2005. Springer-Verlag.

[13] J. W. S. Liu. Real-Time Systems. Prentice-Hall, 2000.
[14] Z. Manna and A. Pnueli. Verifying hybrid systems. In Hybrid Systems,

volume LNCS 736, pages 4–35, 1993.
[15] H. Price and R. Corry, editors. Causation, Physics, and the Constitution

of Reality. Clarendon Press, Oxford, 2007.


	Numerical Representation
	Causality, Simultaneity, and Superdense Time
	Multiform Time
	References

