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Abstract. This paper aims to facilitate the integration of formal veri-
fication techniques into model-based design. Applying verification tools
to industrially relevant models requires three main ingredients: a formal
model, a formal verification method, and a set of formal specifications.
Our focus is on hybrid automata as the model and reachability analysis
as the method. Much progress has been made towards developing effi-
cient and scalable reachability algorithms tailored to hybrid automata.
However, it is not easy to encode rich formal specifications such that
they can be interpreted by available tools for reachability. In this paper,
we consider specifications expressed in pattern templates, which are pre-
defined phrases with placeholders for state predicates. Pattern templates
are close to the natural language and can be easily understood by both
expert and non-expert users. We give formal definitions for selected pat-
terns in the formalism of hybrid automata and provide monitors which
encode the properties as the reachability of an error state. By composing
these monitor automata with the formal model under study, the prop-
erty can be checked by off-the-shelf reachability tools. We illustrate the
workflow on an electromagnetic brake use case.

1 Introduction

Model-based design (MBD) is a paradigm that enables the cost-effective and
quick development of complex systems, such as control, energy, and communica-
tion systems. MBD has facilitated the detection and correction of errors in the
early design stages and has established a common framework for communication
throughout the whole design process [46].

In this methodology, there is typically a sequence of steps that should be
followed. The designer first models the physical plant, relying either on first
principles or system identification; this model captures the dynamical character-
istics of the physical parts of the system using mathematical equations. Then,



the designer synthesizes a controller that regulates the behavior of the physical
system by applying control rules. The composition of the controller and the plant
yields the closed-loop (controlled) model. Once such a model is constructed or
derived, the designer performs extensive simulation and testing in order to check
its behavior against different configuration settings. The goal is to analyze and
evaluate the controller design by inspecting the behavior of specific signals or
variables over time. The analysis can be extensive and is typically performed
with respect to some requirements (also called specifications or objectives). This
step is a critical one and is known as validation. In practice, however, these
requirements are high-level and often vague or informal. In case the system be-
havior is not satisfying with respect to these requirements, the designer has to
modify the controller, e.g. by tuning the parameters or gains, and then repeat
the validation step. Through these validation efforts, the design is deemed to
be satisfactory or not. In some cases, however, the evaluation may remain in-
conclusive. That is typically due to the fact that the designer manually inspects
and assesses simulation behaviors, and they may have to rely on their domain
expertise to reason about the design quality [33].

The necessity to provide guarantees of correctness and performance has moti-
vated the development of formal verification techniques and the design of indus-
trially oriented verification tools. Their goal is to guarantee that specifications
are satisfied through a rigorous mathematical analysis of the system. Over the
past years, there have been a lot of efforts to bridge the gap between formal
verification and industrial applications. The main focus has been on addressing
the issues with the format mismatch and scale of industrial sized models. That
is especially the case with the new generation of systems, embedded and cyber-
physical, as they are complex with various interacting components, frequently
have a safety-critical nature, and have applications in various domains such as
health care, transportation, automation and robotics [48].

An appropriate mathematical model for design of such systems is hybrid
systems [2]. As such, the field of formal verification of hybrid systems has gained
wide attention from both academia and industry. Hybrid systems demonstrate
joint discrete and continuous behaviors by combining the traditional models for
discrete systems with classical differential- and algebraic- equations based models
for dynamical systems [3]. Those systems are difficult to analyze, as any kind of
nondeterminism in the system, like disturbances, measurement noise, parameter
uncertainties, user input, or operating conditions, may have adverse effects on
the performance. Different techniques for hybrid system verification have been
proposed. They could be broadly divided into 3 categories: approaches based on
symbolic representations (e.g. reachability analysis), abstraction, or logic. Survey
papers can be found at [2, 20,40].

Recently, there has been increased interest in fully automated verification
tools, such as set-based reachability analysis [38]. That is the case as they have
been successful in finding bugs in real-world applications and there has been
much progress towards efficient and scalable reachability algorithms [2]. On the



contrary, however, little effort has been made on formalizing requirements such
that they can be verified automatically. The main reason concerns the semantic
mismatch between industrial requirements, usually formulated in natural lan-
guage, and the formal requirements.

In industry, system requirements are usually described in natural language
or controlled natural language (CNL). A CNL is a subset of a natural language
with a constrained grammar such as to reduce or eliminate ambiguity. The moti-
vation is that requirements written in a CNL can be understood across different
professional disciplines (e.g. technical, legal, marketing), but can also be trans-
lated into a formal representation and hence be used along a system engineering
tool chain [37].

In the case of hybrid systems, the translation from CNL into a formal rep-
resentation needs to be done manually which introduces the risk of translation
errors. In particular, requirements which explicitly mention time or uncertainties
in the environment models, may lead to complex expressions. We are therefore
proposing a template–based, semi–automated translation of system requirements
into a formal representation (so-called monitor automata).
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Fig. 1: Verification workflow against formal specifications.

A schematic of the workflow is depicted in Figure 1. A (safety) requirement
in CNL is translated into a monitor automaton using pattern templates. The
monitor automaton has the same syntax and respects the same semantics as
the system model. As such, it can be combined (composed) combined with the
system model and fed into a reachability tool. Given that the monitor automa-



ton encodes the forbidden states, the verification of a given set of requirements
combined with a given system is successful if the intersection of the reachable
states and the forbidden states is empty (see also [28] for the one of the earliest
works on monitor automata).

In this paragraph, we cite related work on pattern templates – related work
on temporal logic is discussed in Section 5. The use of a CNL notation em-
ploying templates for the specification of system requirements and their (semi–)
automatic translation for verification has been proposed earlier. Pattern tem-
plates (also called specification templates) contain predicates which are to be
substituted by logical expressions in order to formulate the actual requirements.
Dwyer et al. [22] were among the first to introduce qualitative specification pat-
tern templates and their translation into different logic expressions (e.g. linear
temporal logic). Among others, Konrad and Cheng [36] extended Dwyer’s orig-
inal patterns to the real–time domain. Post et al. [47] applied and extended
those patterns for the automotive industry. A generalisation to probabilistic
specification patterns was introduced in [26]. For purely discrete systems, tools
already exist that allow for the input of CNL expressions (e.g. in the form of
the above mentioned pattern templates) and automatically translate them into
formal expressions. Examples of such tools are Stimulus [5], Embedded Spec-
ifier [12], AutoFocus3 [11] and SpeAR [8]. On a system level and in the CNL
representation, pattern templates for hybrid systems do not differ from pattern
templates already available. However, the output of these tools is in the form of
finite state machines, Büchi–automata or general ω–automata, and is not appli-
cable to hybrid systems and the state-based properties we consider. Therefore,
existing approaches for automatic translation into formal representation cannot
be used.

The remainder of the paper is organized as follows: We present hybrid au-
tomata, pattern templates and the formalization of the requirements through
pattern templates in Section 2. The monitor automata for the formalized pattern
templates are described in Section 3. We show the applicability of the presented
approach in Section 4 on an electromechanical brake use case. In Section 5, we
give a brief overview of the state of the art. The paper concludes with Section 6.

2 Pattern Templates for Hybrid Automata

In this section, we introduce the framework of hybrid automata and the pattern
templates. As a first major contribution, we define a set of pattern templates
in a formalism that is suitable for hybrid automata and show their usability on
practical applications. Later, in section 3, we are going to see how to use these
templates with reachability tools.

2.1 Hybrid Automata

In this part, we present the preliminaries and give a formal definition of a hybrid
automaton and its run semantics.



Preliminaries Given a set X = {x1, . . . , xn} of variables, a valuation is a function
v : X → R. Let V (X) denote the set of valuations over X . Let Ẋ = {ẋ1, . . . , ẋn}
and X ′ = {x′1, . . . , x′n}. The projection of v to variables Y ⊆ X is v↓Y = {x →
v(x)|x ∈ Y }. The embedding of a set U ⊆ V (X) into variables X̄ ⊇ X is the
largest subset of V (Y ) whose projection is in U , written as U |X̄ . Given that
a valuation u over X and a valuation v over Y agree, i.e., u↓X∩X̄= v ↓X∩X̄ ,
we use u t v to denote the valuation w defined by w↓X= u and w↓X̄= v. Let
constX(Y ) = {(v, v′)|v, v′ ∈ V (X), v↓Y = v′↓Y }.
Definition 1 (Hybrid automaton). [3, 29] A hybrid automaton

H = (Loc, Lab,Edg, X, Init, Inv,Flow, Jump)

consists of
– a finite set of locations Loc = {`1, . . . , `m} which represents the discrete

states,
– a finite set of synchronization labels Lab, also called its alphabet, which can

be used to coordinate state changes between several automata,
– a finite set of edges Edg ⊆ Loc × Lab × Loc, also called transitions, which

determines which discrete state changes are possible using which label,
– a finite set of variables X = {x1, . . . , xn}, partitioned into uncontrolled vari-

ables U and controlled variables Y ; a state of H consists of a location ` and
a value for each of the variables, and is denoted by s = (`,x);

– a set of states Inv called invariant or staying condition; it restricts for each
location the values that x can possibly take and so determines how long the
system can remain in the location;

– a set of initial states Init ⊆ Inv; every behaviour of H must start in one of
the initial states;

– a flow relation Flow, where Flow(`) ⊆ RẊ × RX determines for each state
(`,x) the set of possible derivatives ẋ, e.g., using a differential equation such
as

ẋ = f(x);
Given a location `, a trajectory of duration δ ≥ 0 is a continuously dif-
ferentiable function ξ : [0, δ] → RX such that for all t ∈ [0, δ], (ξ̇(t), ξ(t)) ∈
Flow(`). The trajectory satisfies the invariant if for all t ∈ [0, δ], ξ(t) ∈ Inv(`).

– a jump relation Jump, where Jump(e) ⊆ RX×RX′ defines for each transition
e ∈ Edg the set of possible successors x′ of x; jump relations are typically
described by a guard set G ⊆ RX and an assignment (or reset) x′ = r(x) as

Jump(e) = {(x,x′) | x ∈ G ∧ x′ = r(x)}.

A jump can be cast as urgent, which means that time cannot elapse when the
state is in the guard set.

We define the behavior of a hybrid automaton with a run: starting from one of
the initial states, the state evolves according to the differential equations whilst
time passes, and according to the jump relations when taking an (instantaneous)
transition. Special events, which we call uncontrolled assignments, model an
environment that can make arbitrary changes to the uncontrolled variables.



Definition 2 (Run semantics). An execution of a hybrid automaton H is a
sequence

(`0,x0) δ0,ξ0−−−→ (`0, ξ0(δ0)) α0−→ (`1,x1) δ1,ξ1−−−→ (`1, ξ1(δ1)) . . . αN−1−−−−→ (`N ,xN ),

with αi ∈ Lab ∪ {τ}, satisfying for i = 0, . . . , N − 1:

1. Trajectories: In location `i, ξi is a trajectory of duration δi with ξi(0) = xi
and it satisfies the invariant. It does not go through urgent guard sets unless
duration δi is 0.

2. Jumps: If αi ∈ Lab, there is a transition (`i, αi, `i+1) ∈ Edg with jump
relation Jump(e) such that (ξi(δi),xi+1) ∈ Jump(e) and xi+1 ∈ Inv(`i+1).

3. Uncontrolled assignments: If αi = τ , then `i = `i+1 and ξi(δi) ↓Y = xi+1 ↓Y .
This represents arbitrary assignments that the environment might perform
on the uncontrolled variables U = X \ Y .

A run of H is an execution that starts in one of the initial states, i.e., (`0,x0) ∈
Init. A state (`,x) is reachable if there exists a run with (`i,xi) = (`,x) for some
i.
Note that the strict alternation of trajectories and jumps in Def. 2 is of no par-
ticular importance. Two consecutive jumps can be represented by inserting a
trajectory with duration zero (which always exists), and two consecutive tra-
jectories can be represented by inserting an uncontrolled assignment jump that
does not modify the variables. Having an event at the end of the run will simplify
the notation in the remainder of the paper.

2.2 Formalizing Pattern Templates for Hybrid Automata

In this section, we list the requirements considered in this paper, give a compact
(intuitive) definition in structured English, and a formal definition based on the
runs of the hybrid automaton.

Our work builds upon the pattern templates introduced by Konrad and
Cheng in [36]. While in [36], the patterns were formally defined using tempo-
ral logics (MTL), these definitions do not immediately carry over to monitoring
with hybrid automata. In this respect, we select some common pattern tem-
plates, portrayed in Table 1, and define them in a formalism that is suitable for
hybrid automata.

2.2.1 Preliminaries

We now introduce some notation to denote in a compact manner the states on
runs and the times at which these states are taken by the run. This will allow
us to express properties of runs in a clear and concise manner.

Let p be a predicate over the state variables, i.e., a function RX→ B. We
write the shorthand p(x) to denote that p is true for x. Let the set of runs of
a hybrid automaton H be Runs(H). In the following we consider a run r ∈ R
given by locations `i, continuous states xi, trajectories ξi, and durations δi. To



Table 1: Short overview of Pattern Templates [36]
Pattern name Description & Example

absence Specifies a state formula that must not hold.
ABS system: "The ABS controller should never allow a wheel
skidding."

minimum duration Describes the minimum amount of time a state formula has to
hold once it becomes true.
Engine starter system: " The system has a minimum ’off’ period
of 120 seconds before it reenters the cranking mode".

maximum duration Captures that a state formula always holds for less than a
specified amount of time.
Engine starter system: "The system can only operate in engine
cranking model for no longer than 10 seconds at one time."

bounded recurrence Denotes the amount of time in which a state formula has to
hold at least once.
ABS system: "The ABS controller checks for skidding every 10
millseconds."

bounded response Restricts the maximum amount of time that passes after a
formula holds until another state formula becomes true.
ABS System: "From direct client input of and response to rapid
deceleration must occur within 0.015 seconds.

bounded invariance Specifies the minimum amount of time a state formula must
hold once another state formula is satisfied.
Engine starter system: "If error 502 is sent to the Driver Infor-
mation System, the braking system is inhibited for 10 seconds."

simplify the formalization of the properties, we introduce some further notation
for the timing of states on runs. For a run r the event-times are ti =

∑i
j=0 δi,

so the jump number i takes place at time ti for i = 0, . . . , N − 1. For notational
convenience, let t−1 = 0. We introduce a total order on the time points of the run
by looking at pairs (i, t), where i is an index and t is the global time. Formally,
let the event-time be T = N0 × R≥0. To clarify the difference, we denote real
time with t and event-time with τ ∈ T. We use the lexicographical order on
event-times, formally

(i, t) < (i′, t′)⇔ (i < i′) ∨ (i = i′ ∧ t < t′).

The event-time allows us to uniquely identify discrete and continuous states on
the run. The event-time domain of a run r is the set of pairs

dom(r) =
{

(i, t)
∣∣ 0 ≤ i ≤ N − 1, ti−1 ≤ t ≤ ti} ∪ {(N, tN−1)

}
,

where the latter term captures that the last state in the run, (`N ,xN ) is taken
at time tN−1 (total duration of the run). The open truncated event-time domain
of a run r excluding the last T time units is the set of pairs

dom−T (r) =
{

(i, t) ∈ dom(r)
∣∣ t < tN−1 − T

}
.



The truncated domain will be used for properties that refer to future events that
are not covered by the domain of the run. We take an optimistic view of such
cases: if the property holds on the truncated domain, then it is considered to
hold on the run.

For a given τ = (i, t) ∈ dom(r), let r(τ) ∈ RX be the continuous state
ξi(t− ti), and let rLoc(τ) ∈ Loc be the discrete state (location) `i. This denotes
the time elapsed between two event-times τ = (i, t), τ ′ = (i′, t′) as

d(τ, τ ′) = t′ − t.

Sometimes, we are interested in the first time that a predicate holds. If the
predicate, say q, is true over a left-open interval, the infimum shall be used. Let

Infi (r, q) = inf
τ∈dom(r)

q(r(τ)).

If r is clear from the context, we use the shorthand

τq.1 = Infi(r, q).

Similarly, we look for the first time that a predicate p holds up to and before an
event-time τ ′,

first (r, τ ′, q) = inf
τ∈dom(r),τ≤τ ′

q(r(τ)).

To formally denote that a predicate holds at time τ for some nonzero amount
of time, we define for a run r, a predicate p, and event-time τ ,

persists (r, p, τ) = ∃δ > 0 : ∀τ ′, τ ≤ τ ′, d(τ, τ ′) ≤ δ : r(τ ′).

2.2.2 Formal Definitions

We define the properties of a hybrid automaton via its runs. A hybrid automaton
H satisfies a property φ if and only if all runs r ∈ Runs(H) satisfy φ. In the
following, we can therefore simply define what it means for a run r to satisfy
the property φ, which we write as r |= φ. Table 2 presents a list of clarifying
remarks regarding the pattern templates.

absence. After q, it is never the case that p holds.

r |= φ iff for all τq, τ ∈ dom(r) with q(r(τq)) and τ ≥ τq, holds ¬p(r(τ)).

absence (timed). When T time units are measured, after q was first satisfied,
it is never the case that p holds.

r |= φ iff for all τq, τ ∈ dom(r) with q(r(τq)) and d(τq, τ) ≥ T holds ¬p(r(τ)).

minimum duration. After q, it is always the case that once p becomes satisfied,
it holds for at least T time units.

r |= φ iff either:



Table 2: Remarks on pattern templates.

– The properties in this paper refer to state predicates q, p, s : RX → {true, false}.
These predicates describe states, not events. When p, q, s are always true or false,
the monitor automata can be simplified.

– State predicates can express timing properties by adding an extra clock to the
monitor, so that the time is now a state variable that can be used in q, p and s.

– We show so-called triggered versions of the properties, which only take effect after
a predicate q holds. A run, for which !q always holds, satisfies the property.

– There are more than one equivalent definitions for the properties (e.g. switch be-
tween universal and existential quantifiers). The selection of the most suitable one
has been made to reflect the natural language of the pattern templates in Table 4.

– The universal quantifier of an empty set is always true.
– It is possible to check properties both for the bounded and unbounded time horizon.

For some patterns, these two cases are distinguished explicitly.
– There is both a linguistic and practical difference between becomes true and holds.

The former could be seen as an edge, i.e. the signal was false earlier and then
became true. The latter could describe a property that was always true.

– The monitor automata are nondeterministic because this can lead to more compact
automata.

(i) for all τ∗p , τq ∈ dom(r) with q(r(τq)), τ∗p ≥ τq, holds ¬p(r(τ∗p )) (never q, or
never p after q), or

(ii) if τq ∈ dom(r) with q(r(τq)), then for τq.1 = Infi (r, q) holds:
(a) for all τ∗p , τ∗p̄ ∈ dom(r) with p(r(τ∗p )), ¬p(r(τ∗p̄ )), τq.1 ≤ τ∗p < τ∗p̄ ,

d(τq.1, τ∗p̄ ) > T (p not becoming false within T after τq.1), and
(b) for all τp, τp̄, τ ′p̄ ∈ dom(r) with τq.1 ≤ τp̄ < τp < τ ′p̄, p(r(τp)), ¬p(r(τp̄))

and ¬p(r(τ ′p̄)), it holds that d(τp̄, τ ′p̄) > T (violations of p are more than
T apart).

maximum duration. After q, it is always the case that once p becomes satisfied,
it holds for less than T time units.

r |= φ iff for all τq ∈ dom(r) with q(r(τq)) either

(i) for all τ ∈ dom(r) with τ ≥ τq, ¬p(r(τ)) (never q, or p never holds after
q), or

(ii) for all τp, τ ′p ∈ dom(r) with τp ≥ τq, p(r(τp)), p(r(τ ′p)) one of the following
holds:
(a) d(τp, τ ′p) < T (τ ′p is early enough, including the τp = τ ′p case), or
(b) there is a τp̄ such that ¬p(r(τp̄)) and τp < τp̄ < τ ′p (p is false in between).



bounded recurrence. After q, it is always the case that p holds at least every
T time units.

For the unbounded case, r |= φ iff for all τq ∈ dom(r) with q(r(τq)) both
following criteria hold:

(i) for all τp ∈ dom(r) with p(r(τp)) and τp ≥ τq there is a τ ′p ∈ dom(r) such
that τp < τ ′p, d(τ ′p, τp) ≤ T and p(r(τ ′p)) (τp’s with distance less than T ).

(ii) there is a τp ∈ dom(r) with τp ≥ τq, p(r(τp)) such that d(τq, τp) ≤ T .
(distance between τq and first τp is less than T ).

For a bounded time horizon, r |= φ iff for all τq ∈ dom−T (r) with q(r(τq))
both following criteria hold:

(i) for all τp ∈ dom−T (r) with p(r(τp)) and τp ≥ τq there is a τ ′p ∈ dom(r)
such that τp < τ ′p, d(τ ′p, τp) < T and p(r(τ ′p)).

(ii) there is a τp ∈ dom(r) with τp ≥ τq, p(r(τp)) such that d(τq, τp) ≤ T .

bounded response (persisting). After q, it is always the case that if p holds,
then s persists (holds for nonzero time) after at most T time units.

For an unbounded time horizon, r |= φ iff for all τq ∈ dom(r) with q(r(τq))
one of the following holds:

(i) for all τ ∈ dom(r) with τ ≥ τq, ¬p(r(τ)) (never q, or p never holds after
q), or

(ii) for all τp ∈ dom(r) with τp ≥ τq and p(r(τp)), there is a τs ∈ dom(r) such
that τp ≤ τs, d(τs, τp) ≤ T and persists (r, τs, s).

For a bounded time horizon, r |= φ iff one of the following holds:

(i) for all τq, τ ∈ dom(r) with q(r(τq)), τ ≥ τq, holds ¬p(r(τ)) (never q, or p
never holds after q), or

(ii) for all τq, τp ∈ dom−T (r) with τp ≥ τq, q(r(τq)) and p(r(τp)), there is a
τs ∈ dom(r) such that τp ≤ τs, d(τp, τs) ≤ T and persists (r, τs, s).

Remark 1. The reason why we require τ ∈ dom−T (r) in the bounded time hori-
zon (with the restricted domain being right-open) is the following: We assume an
optimistic interpretation of bounded runs, in the sense that if there is a contin-
uation of the run for which the system satisfies the property, then the bounded
run satisfies the property. If the restricted domain was right-closed, then a run
ending with ¬s could violate the property, but have a continuation that (in zero
time) sets s to true, which then should satisfy the property.

Remark 2. We require s to hold for nonzero time, formally with the use of
persists (·), because the monitor automaton may give a false alarm otherwise.

bounded invariance. After q, it is always the case that if p holds, then s holds
for at least T time units.
r |= φ iff one of the following holds:



(i) for all τq ∈ dom(r) with q(r(τq)), there is no τp with τp ≥ τq such that
p(r(τp)) (never q, or p never holds after q), or

(ii) for all τp ∈ dom(r) with τp ≥ τq.1, p(r(τp)), and for all τ ∈ dom(r) such
that τp ≤ τ , d(τp, τ) < T , the predicate s(r(τ)) is true.

Remark 3. Note that in the case that predicates s = p, then p has to hold forever
(by recursion).

2.3 Application of Formalized Pattern Templates

Formalizing practical requirements is considered to be an important but difficult
task even for experts [19,31]. This section aims to illustrate the use of templates
and is divided in two parts. In the first, we express common control objectives
with our patterns.

2.3.1 Typical Control Objectives

Some common control objectives can be expressed with the formalized pattern
templates. In the following, we consider the untriggered version of the require-
ments, which is equal to setting q := true in our patterns. For simplicity, we
assume a reference signal xref that is positive and constant as well as that
x(0) < xref holds.

– Safety: The state x of the system should always remain inside the acceptable
operating range expressed as the safe region S.
This requirement is matched by the absence pattern with p := {x /∈ S}.

– Target Reachability: The state x of the system should be within distance ε
of the target (xtarget) within T time units.
This property could be encoded as the bounded response pattern, where
p := true and s := {d(x, xtarget) ≤ ε}, with d(x, y) being a function that
computes the distance between states x and y.

– Overshoot: The state x of the system should not exceed an overshoot of ov%
with respect to the reference signal (xref ).
This property can be formulated as an absence pattern, where p := {x >
(100 + ov)% · xref}.

– Settling Time: The state x of the system should reach and stay within a per%
of the reference xref within Tset time units.
This property can be described by the absence (timed) pattern, where
T := Tset, p:= {x ≤ (100− per)% · xref ∨ x ≥ (100 + per)% · xref}.



– Rise-Time: The state x of the system should reach 90% of the reference xref
at time Trise.
This property can be mapped to the bounded response pattern, where
p :=true, T := Trise, and s := {x >= 0.9 ∗ xref}.

– Undershoot: After reaching the reference xref , the state x of the system
should not fall below a threshold of u% with respect to the reference.
This property can be expressed with the bounded invariance pattern,
where T :=∞, p := x ≥ xref and s := {x ≥ (100− u)% · xref}.

Remark 4. In several cases above, the monitor can be simplified (when p :=true,
T := 0, etc.) or be expressed with more than one pattern templates. Note that
the scenario of a varying reference signal can be captured with the introduction
of predicate q.

2.3.2 Industrial Use Cases

This section shows the applicability of the pattern templates given within this
paper to different application domains. We have exemplary selected three dif-
ferent application domains, wind turbines [35, 49], automated driving [30, 50]
and braking systems [24, 51]. Table 3 summarizes some of the application re-
quirements and their mapping to pattern templates. Some of the requirements
can be difficult to translate into a formal representation without a given pattern
template. Note that the universality can be described via the absence property,
i.e. replacing p in the definitions by !p.

3 Verifying Pattern Templates using Monitor Automata

In this section, we briefly present reachability analysis and provide monitor au-
tomata which encode the requirements as reachability problems. These monitor
automata constitute the second main contribution of this paper, as they can be
composed with the system under study and thus can be straightforwardly used
by reachability tools.

3.1 Reachability Analysis

Set-based reachability analysis can be seen as a generalization of numerical sim-
ulation. In numerical simulation, one picks an initial state and tries to compute
a successor state that lies on one of the solutions of the corresponding flow con-
straint and also satisfies one of the jump conditions (some intermediate points
along the trajectory are usually kept as well). Then one picks one of the successor
states of the jump and repeats the process. Like numerical simulation, reacha-
bility analysis directly follows the transition semantics of hybrid automata, but
considers sets of states instead of single states [20].



Table 3: Representative examples of requirements in natural language and their
mapping to pattern templates for different application domains.
Appl. Domain Requirement Category

wind turbines The pitch rate of the turbine blades shall be smaller than
the maximal pitch rate.

universality

The absolute difference between the commanded pitch angle
and the measured pitch angle can only be larger than the
maximum difference for less than c time units.

maximum duration

The absolute difference between two individual pitch angles
can only be larger than the maximum difference for less than
c time units.

maximum duration

automated
driving

The largest communication sequence flow duration shall be
less than TBD seconds.

maximum duration

When an acknowledgeable message arrives, an ACK mes-
sage shall be sent to the sender by the receiver within the
maximal waiting time.

maximum duration
(triggered)

If an ACK message exceeds the maximal waiting time, the
message being acknowledged shall be considered as lost.

universality

If a message is considered as lost, it shall be resent.
A vehicle shall send MVR_FINISHED messages to its session
partner after finishing successfully its planned manoeuvre.

universality
(triggered)

After a vehicle i received a propose message with the in-
formation {ID-x, constraints-x, Tfinish-x} and after vehicle
i sent an accept message with ID-x, every planned contin-
gency manoeuvre of vehicle i must satisfy constraints-x, un-
til the point of time Tfinish-x is reached.

minimum duration
(triggered)

After starting execution of the manoeuvre primitive k it is
always the case that if the actual disturbances and mea-
surement errors are below error-bounds-k then the deviation
of the state from the reference trajectory is below state-
bounds-k for at least duration-k.

bounded response
(triggered)

brake system The caliper must reach x0 = 0.05 dm after the braking re-
quest is issued within 20 ms with a precision of 4%.

bounded response

The caliper speed at contact must be below 2 mm/s. absence

Just like numerical simulation, reachability computation has to use approxi-
mations if the dynamics of the system are complex. Working with sets instead of
points, approximate reachability can be conservative in the sense that the com-
puted sets are sure to cover all solutions. Computation costs generally increase
sharply in terms of the number of continuous variables. Scalable approximations
are available for certain types of dynamics, as discussed later in this section,
but this performance comes at a price in accuracy. The trade-off between run-
time and accuracy remains a central problem in reachability analysis. Surveys
of reachability techniques for hybrid automata can be found, e.g., in [6, 20].



The reachable set consists of all the states that can be visited by a trajectory
of the hybrid system starting in a specified set of initial states. Reachability anal-
ysis has often been motivated by safety verification, which consists in checking
whether the intersection of the reachable set with a set of bad states is empty.
When the reachable set of a hybrid system is not exactly computable, we try
to compute an overapproximation so that if it does not intersect the set of bad
(forbidden) states, the hybrid system is guaranteed to be safe [6].

Fig. 2: Safety verification of a 20-dimensional helicopter model [25]. Conducted
reachability analysis with SpaceEx tool over a time horizon of 30 seconds. Blue:
reachable sets, red: unsafe area, magenta: initial set.

3.2 Monitor Automata for Reachability

In this section, we define monitor automata that, composed with the system un-
der test, encode the requirements as reachability properties as follows. Consider
a system under test H and a monitor automaton M . The goal is that H satis-
fies a property φ if and only if the location error is unreachable in the parallel
composition H||M . We prove correctness of M by showing that every violating
run of H has a corresponding run in H||M that reaches the error location, and
vice versa. The monitor automata are shown in Table 4.

3.2.1 Parallel Composition

We now give a formal definition of the standard way to couple two hybrid au-
tomata. We will use this operation to connect the system under test with its
monitor. Intuitively, both automata must agree on every change of a variable.
The operator is similar to the composition operator in [4].



Table 4: Pattern templates and translation to monitor automata.
Pattern name Language Template Monitor Automaton

absence After q, it is never the
case that p holds.

absence (timed) When T time units are
measured, after q was
first satisfied, it is never
the case that p holds.

minimum duration After q, it is always the
case that once p becomes
satisfied, it holds for at
least T time units.

maximum duration After q, it is always the
case that once p becomes
satisfied, it holds for less
than T time units.

bounded recurrence After q, it is always the
case that p holds (for
nonzero time) at least ev-
ery T time units.

bounded response
(persisting)

After q, it is always the
case that if p holds,
then s persists (holds for
nonzero time) after at
most T time units.

bounded invariance After q, it is always the
case that if p holds, then
s holds for at least T time
units.



The jump relations of synchronized transitions result from the conjunction
of the participating transitions. Independent transitions, i.e., those that do not
synchronize, are allowed to change variables arbitrarily and the variables over
which their jump relation is not defined are set to remain constant.

Definition 3 (Composition of HA). The parallel composition of hybrid au-
tomata H1 and H2 is the hybrid automaton H = H1||H2

– Loc = Loc1 × Loc2,
– Lab = Lab1 ∪ Lab2,
– Edg = {((`1, `2), α, (`′1, `′2)) | (α ∈ Lab1 ⇒ (`1, α, `′1)) ∧ (α ∈ Lab2 ⇒

(`2, α, `′2))},
– X = X1 = X2 (by assumption), Y = Y1 ∪ Y2, U = (U1 ∪ U2) \ Y ,
– Jump((`1, `2), a, (`′1, `′2)) with µ = {(v, v′) ∈ µi} iff for i = 1, 2,
• a ∈ Labi and (`i, ai, µi, `′i) ∈ Edgi, or
• a /∈ Labi, `′i = `i, and µi = constXi

(Zi), where Z1 = Y1\Y2 and Z2 =
Y2\Y1;

– Flow(`1, `2) = Flow1(`1) ∩ Flow2(`2);
– Inv(`1, `2) = Inv1(`1) ∩ Inv2(`2);
– Init(`1, `2) = Init1(`1) ∩ Init2(`2).

Without loss of generality we can assume that H and M have the same
variables. If M has a variable not in H, e.g., a clock variable for measuring the
time between events, we can add it to H without restricting it in the invariants,
guards, or flows. Note that all transitions in M have the label τ , so they do not
synchronize with any transitions in H.

A run rH||M in H||M is given by locations `i = (`Hi , `Mi ), continuous states
xi, trajectories ξi, durations δi, and labels αi. Let rH be the projection of the
run onto H, obtained by replacing `i with `Hi , and let rM be the projection
of the run onto M , obtained by replacing `i with `Mi and αi with τ . Then by
definition, we have that for any run rH||M in Runs(H||M), rH ∈ Runs(H) and
rM ∈ Runs(M).

3.2.2 Operations on Runs

We use the following shorthand notation to improve the readability of the proofs.
As shorthand, we will define a run by the sequence (`i,xi, δi, ξi, αi)i=0,...,N−1.
Given a run r and an event-time τ∗ = (k∗, t∗) ∈ dom(r), the run can be split
into the prefix up to τ∗, and the postfix after τ∗. The prefix is extended with a
silent transition, which by definition can be injected anywhere:

prefix (r, (k∗, t∗)) = (`i,xi, δi, ξi, αi)i=0,...,k∗−1; (`k∗ ,xk∗ , t∗−tk∗−1, ξk∗ , τ). (1)

postfix (r, (k∗, t∗)) =
(
`k∗ , r(k∗, t∗), δk∗ − tk∗−1, ξ

∗, αk∗
)
;

(`i,xi, δi, ξi, αi)i=k∗+1,...,N−1, (2)



where r(k∗, t∗) = ξk∗(t∗ − tk∗−1), and ξ∗(t) = ξk∗(t − tk∗−1) is the trajectory
ξk∗(t) shifted backwards in time by tk∗−1. Similarly, the infix between event-
times τa = (ka, ta) ∈ dom(r), τb = (kb, tb) ∈ dom(r), with τa ≤ τb, is

infix (r, (ka, ta), (kb, tb)) = prefix (postfix (r, (ka, ta)) , (kb − ka, tb − ta)) . (3)

It is straightforward that the concatenation

prefix (r, τ) ; postfix (r, τ)

is a run of H. Similarly, the concatenation

prefix (r, τa) ; infix (r, τa, τb) ; postfix (r, τb)

is a run of H. With a slight abuse of notation, we write r× `∗ to denote the run
(`i× `∗,xi, δi, ξi, αi)i=0,...,N−1. This is not necessarily a run of H||M , but it can
be one, such as under the following condition.

Lemma 1. Let r = (`i,xi, δi, ξi, αi) be a run of H. If a location `M in M has
(i) no invariant constraints and (ii) no urgent outgoing transitions, then r× `M
is a run of H||M .

Lemma 2. Let r = (`i,xi, δi, ξi, αi) be a run of H. If a location `M in M has
(i) no invariant constraints and (ii) one urgent outgoing transition with guard
condition p, leading to location `′M that has (iii) no invariant constraints and
(iv) no urgent outgoing transitions then

prefix (r, τp.1)× `M ; postfix (r, τp.1)× `′M

is a run of H||M , where τp.1 = Infi (r, p) is the smallest event time where p
holds.

We call a monitor M non-blocking if for any run rH of H, there is a corre-
sponding run rH||M of H||M such that rH is the projection of rH||M onto H.
Simply put, there is no deadlock that caused a run to be terminated.

3.2.3 Correctness Proofs

A monitor automaton is correct if its error location is reachable exactly when
the system H violates the property. Formally, let h be a run of H that violates a
given property φ. Then we first show (a) that there exists a run r of H||M that
reaches the error location. Second, we show (b) that for any run r of H||M that
reaches the error location, the run projected onto H violates the property. We
intuitively explain the proofs for the absence pattern. All the remaining proofs
can be found at the Appendix.



Sufficient Conditions.
Since r 6|= φ, there exist τq, τp ∈ dom(r) with q(r(τq)), τp ≥ τq, and p(r(τp)).
With Lemma 1 and the definition of a jump,

prefix (h, τq) × idle ; infix (h, τq, τp) × loc1 ; postfix (h, τp) × error

is a run of H||M .

Necessary Conditions.
To get from idle to error, M had to take first a transition with guard q and

then a transition with guard p. Consequently, there exist τq and τp with τq ≤ τp,
q(rH(τq)) and p(rH(τp)). τq and τp are witnesses that violate φ.

4 Application Example

In this section, we illustrate the workflow on an industrial use case on electromag-
netic brakes and highlight how the introduced pattern templates and associated
monitor automata can facilitate the verification process.

4.1 Toolchain

There are several tools for hybrid systems reachability analysis, such as C2E2 [21],
CORA [1], Flow* [14], HyCreate [7], HyReach [39], SoapBox [27], SpaceEx [25].
In the context of this work, we use SpaceEx; a tool for set-based reachability
analysis. SpaceEx is suitable for safety verification problems, which are reacha-
bility problems with forbidden states.

SpaceEx supports hybrid automata models and provides hierarchy, templates
and instantiations of components. The composition of multiple hybrid automata
is supported by SpaceEx and it is automatically conducted by the tool, once
the model is specified. The design of the formal model is facilitated with the
use of SpaceEx Model Editor (MO.E.), a graphical editor for creating models of
complex hybrid systems out of nested components [23].

The construction of verification models out of simulation models (Simulink),
which are supported by SpaceEx and other available tools, is considered in [34,
43]. A tool, formalSpec, that enables the translation of requirements in CNL to
the corresponding monitor automata in SpaceEx is presented in [13].

4.2 Electromagnetic Brake Use Case

The electromagnetic brake (EMB) use case is described in [51]. The requirements
that shall be enforced are presented in [24]. The proposed workflow is shown in
Figure 3.



System Model
(ODE, from [24])

Formal Model
(H.A., from [51])

Formal Spec.
(Monitor, see Table 4)

Language Template
(bounded response)

Formal Spec.
(First-Order Logic)

Specification
(Natural Language)

Composition
(SpaceEx MO.E.)

Verification Outcome
(Graph, Textual)

Reachability Analysis
(SpaceEx )

Fig. 3: Verification workflow against formal specifications (ODE: ordinary differ-
ential equations, H.A.: hybrid automata, MO.E.: Model Editor).

Industrial Model: The system under analysis consists of an experimental electro-
mechanical braking system, together with its controller, implemented in software.
The controller comprises both a feedback and feedforward control part. Figure
4 shows an illustration of the the braking system.

Fig. 4: Schematic of the electro-mechanical brake with electrical engine on left
hand side, brake disc connected to wheel on right hand side and brake caliper
around the brake disc [51].

Formal Model: The braking system can be described with PWA hybrid au-
tomata. It is expressed in SpaceEx format in [51] and it consists of 8 base com-
ponents (single HA) and 4 network components (networks of HA).



Specifications: Let us recall the two braking specifications provided in 3.

1. "The caliper must reach x0 = 0.05 dm after the braking request is issued
within 20 ms with a precision of 4%".
This property can be mapped to the bounded response pattern, where
T := 20, q := true, p := true (braking request), s := {0.96 · x0 ≤ x} and x
represents the caliber position.

2. "The caliper speed at contact must be below 2 mm/s".
This property can be mapped to the absence pattern, where q := true,
p := {v ≥ 2}, and v represents the caliper speed.

Monitor: For the first specification, described by the bounded response pattern,
we use the corresponding monitor automaton of Table 4. We can either replace
manually the p, q, s, and T values, or use the formalSpecs tool [13]. Then, the
monitor automaton in the SpaceEx Model Editor is shown in Figure 5.

Fig. 5: Monitor automaton of the bounded response pattern (in Model Editor).

Composition This step corresponds to the parallel composition of the formal
model with the corresponding monitor. In essence, the variables/signals that ap-
pear in the monitor should be connected with the corresponding variables/signals
of the formal model. In our case, only the caliber position x should be consid-
ered. The variables t and c are local and only used inside the monitor automaton.
FIgure 6 shows the composed system in the Model Editor.

In principle, this mapping/binding step could be automated and performed
with the formalSpecs tool.

Reachability Analysis SpaceEx is used for computing the reachable sets. The
safety verification problem is tackled by introducing as a set of forbidden states
and checking whether the error state is reachable or not. In particular, the forbid-
den state is “loc(monitor_1)==error”. The, we run SpaceEx for approximately
40 seconds and it finds a fixed point after 434 iterations.



Fig. 6: Composition of formal model (scheduler & closed loop) with the monitor
automaton (bounded response).

Verification Outcome The verification outcome is that the error state is not
reachable and the property is satisfied. This result is displayed in two different
ways. First, there is a textual response streamlining whether the forbidden states
have been reached or not, and there is a plot showing the evolution of the
reachable set for the caliber position x. The graph is portrayed in Figure 7.

Fig. 7: Reachable sets of the caliber position computed with SpaceEx

5 Related Work

Formal verification of hybrid systems is a scientifically and technically challeng-
ing problem. Historically, the main emphasis has been on developing efficient
reachability algorithms, thus improving the scalability of the underlying methods
and tools. In contrast, there has been relatively little effort invested in enabling
verification of hybrid systems against rich formal specifications.



The authors in [18] studied the topological aspects of hybrid systems in the
context of propositional modal µ-calculus. Mysore, et al., studied the verification
problem of semi-algebraic hybrid systems for TCTL (Timed Computation Tree
Logic) properties and proved undecidability [44]. Jeannin and Platzer presented
in [32] a differential temporal dynamic logic to specify temporal properties of
hybrid systems. This logic complemented with a theorem prover could enable
verification of nested temporalities for hybrid systems. The authors in [15] stud-
ied the verification of hybrid systems with K-liveness but restricted the system
model to a small subclass of hybrid automata.

Signal Temporal Logic (STL) was proposed in [41,42] as a high-level declar-
ative language for expressing properties of hybrid systems. However, it has been
mainly applied to the lighter problem of runtime verification (monitoring) of
individual hybrid traces (see [45] for the relevant references). More recently,
property-based model-checking of hybrid systems was proposed in [16,17], where
the specification language used is HRELTL, a hybrid extension of the discrete-
time linear temporal logic enhanced with the regular expression operators. A
similar approach of model checking HyLTL, another hybrid extension of LTL,
was developed and presented in [9, 10].

In this paper, we opt to use a template language to express informal require-
ments rather than a full-blown declarative language based on temporal logic.
Certainly, a declarative specification language such as STL offers a degree of
freedom and flexibility that cannot be easily matched by pattern templates.
Nevertheless, we see multiple advantages in choosing this approach.

We first observe that there is a cultural gap between formal verification meth-
ods and the engineers. While the researcher typically appreciates the beauty, the
conciseness and the elegance of a temporal logic formula, an engineer without
formal methods background often sees an unintuitive language that is too distant
from her design practices and hence requires a steep learning curve to master
it. Pattern templates proposed in this paper have the important advantage of
being much closer to the natural language used in the informal requirements,
while still retaining formal and rigorous semantics. Such templates can play an
important role in bridging the gap between formal verification research and its
users.

In addition, we recurrently encounter similar classes of requirements in many
application areas. The main aspects that change between various requirements
are specific parameters. As a consequence, we believe that parameterized speci-
fication templates are amply sufficient to properly cover most requirements used
in practice. This black-box approach enables engineers to use existing libraries
of templates with little effort.

Finally, we see a number of technical challenges in applying property-based
verification of temporal logic-based specifications to the class of hybrid systems
used in this paper. Let us first examine STL specifications, that are defined over
continuous-time and real-valued variable domains. An observer for a simple STL
specification such as �♦[99,100](x < 2) requires considerable memory resources
– the underlying automaton needs 200 real-valued clock variables, resulting in



a considerable dimensionality overhead for any model checking approach. In
addition, the continuous-time semantics of STL has an extreme precision, both
in the time and in the value domain. Consider the STL formula

ϕ = ♦(y ≥ 2 ∧ ((y < 2) S true) ∧ ((y < 2) U true)).

x ≥ 2

x < 2 x < 2

Fig. 8: Observer automaton for ϕ. The error location is omitted.

The formula ϕ, illustrated in Figure 8 requires the existence of some time t,
where y is greater or equal to 2 during a zero duration period (y is strictly smaller
than 2 in both the left and the right neighbourhood of t). The hybrid automata
considered in this paper cannot distinguish events with such precision because
the intersection between the location invariants and location guards must be
non-empty. It follows that hybrid automata cannot be used as the property ϕ
observers. The specification languages HyLTL and HRELTL are both defined
over traces that alternate between continuous trajectories and discrete events.
In contrast to our template language, these languages use untimed temporal op-
erators, therefore not being appropriate to express relative real-time constraints
between states and events in the system.

6 Conclusions

In this paper, we tackle the problem of hybrid systems verification against formal
requirements. We rely upon the notion of pattern templates, as they have shown
promising results in discrete systems and are close to the natural language. We
define these patterns in a formalism which is suitable for hybrid automata and
applicable over both bounded and unbounded time. For these patterns, we give
monitor automata with correctness proofs. Then, we illustrate how the intro-
duced pattern templates and associated monitors can facilitate the verification
process. By composing the monitors with the system model under study, the
safety verification problem is transformed into the reachability problem of an
error state. We show The results obtained from an industrial braking case study
indicate that template monitors can facilitate the applicability of hybrid system
verification tools to industrial settings.

From an industrial viewpoint, these monitor automata can be reused across
different domains and are expected to add a good level of risk reduction when
translating requirements to a formal specification. Doing so does not require any
knowledge of formal methods or hybrid systems by the user. In addition, they
are applicable to any development process in every industry that starts with text
based safety requirements (which is a de-facto standard).
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Appendix A Correctness Proofs

Recall that a monitor automaton is correct if its error location is reachable
exactly when the system H violates the property. Formally, let h be a run of H
that violates a given property φ. Then we first show (a) that there exists a run
r of H||M that reaches the error location. Second, we show (b) that for any run
r of H||M that reaches the error location, the run projected onto H violates the
property.

A.1 Sufficient Conditions.

absence. Since r 6|= φ, there exist τq, τp ∈ dom(r) with q(r(τq)), τp ≥ τq, and
p(r(τp)).

With Lemma 1 and the definition of a jump,

prefix (h, τq) × idle ; infix (h, τq, τp) × loc1 ; postfix (h, τp) × error

is a run of H||M .

absence (timed). Since r 6|= φ, there exist τq, τp ∈ dom(r) with q(r(τq)),
d(τq, τp) ≥ T , and p(r(τp)).

M can remain in idle location during prefix (h, τq), then transition to loc1 and
remain there during infix (h, τq, τp). M can then transition to loc2 with Lemma
1. In loc2, M can take the transition to error, as p holds.

minimum duration. r 6|= φ, so there is τp ≥ τq with p(r(τ∗p )) and q(r(τq)), and
one of the following is true:

(a) there are τp, τ ′p̄ with τq.1 ≤ τp < τ ′p̄, p(r(τp)), ¬p(r(τ ′p̄)), and d(τq.1, τp̄) ≤ T ,
or

(b) there are τp, τp̄, τ ′p̄ ∈ dom(r) with τq,1 ≤ τp̄ < τp < τ ′p̄, p(r(τp)), ¬p(r(τp̄)),
¬p(r(τ ′p̄)), and d(τp̄, τ ′p̄) ≤ T .

In case (a), let τp.1 = first (r, τq.1, p), so τp.1 ≤ τp. M can remain in idle location
during prefix (h, τq.1), then transition to loc1 and with Lemma 2 remain there
during infix (h, τq, τp.1). M can then transition to loc2, setting t to zero with
Lemma 1. M can remain in loc2 during infix

(
h, τp, τ

′
p̄

)
. Since d(τq,1, τ ′p̄) ≤ T , we

have t ≤ T . M can then transition to error.
In case (b), we first show that M can be at loc1 at τp̄. After τq, M can go

to loc2 as soon as p is satisfied, and move back to loc1 as soon as p is violated.
We can therefore assume that M can be loc1 at τp̄. We match the remainder of
the run in analogy to case (a), replacing τq.1 by τp̄.



In the following, we only highlight the differences with the aforementioned proofs
(in terms of what happens before τq and τp).

maximum duration. r 6|= φ implies that

(i) there is τp ≥ τq with r(τp) satisfying p and r(τq) satisfying q, and
(ii)(a) there is τ ′p with p(r(τ ′p)) and d(τp, τ ′p) ≥ T , and
(ii)(b) there is no τp̄ such that ¬(p(r(τp̄)) and τp < τp̄ < τ ′p.

At τp, M can be either in loc1 or loc2. In loc1, M can take the transition to
loc2, as p holds. Once in loc2, M can wait there for T time units, since with
(ii)(a) and (ii)(b), p still holds. M can then transition to error.

bounded recurrence. For the unbounded case (i), there is τp ∈ dom(r) with
p(r(τp)) and τp ≥ τq, such that there is no τ ′p > τp, with d(τ ′p, τp) ≤ T and
p(r(τ ′p)) (τp’s with distance less than T ).

If M is in loc2 at τp, it takes the transition from loc1 to loc2. If M is in loc2,
there are two subcases:

(a) p does not hold within T time units after τp, in which caseM can go to loc1,
wait for more than T time and then go to error.

(b) p holds after τp, which means that it holds at a time τ ′p with d(τp, τ ′p) > T .
Let δ = d(τp, τ ′p)−T . Then M can wait for δ/3 time in loc2, after which p is
false. Then M can go to loc1, wait for T + δ/3 time, and since only T +2δ/3
time has passed since τp, p is still false. Since t > T , M can go to error.

bounded response (persisting). For the unbounded time horizon, r 6|= φ
implies that

(i) there is τp ≥ τq with r(τp) satisfying p and r(τq) satisfying q, and
(ii) there is no τs ≥ τp such that r(τs) satisfies s, d(τp, τs) ≤ T and persists (r, τs, s).

At τp, M can be either in loc1, loc2, or loc3. In loc1, M can transition im-
mediately to loc2 (because p is true). In loc2, there are two options. If s is
false (@τs : d(τp, τs) ≤ T ), M can stay there for more than T time units. M
can then transition to error. If s is not always false, there is a τs such that
¬persists (r, τs, s). At τs, M instantaneously moves to loc3 and then back to
loc2 when s does not hold. From loc3, if ¬s, M can transition to loc2. If s and
¬persists (r, τs, s), M can transition to loc2, since ¬persists (r, τs, s) : ∃τ ′s > τs
with d(τs, τ ′s) = 0 and ¬s(τ ′s).

For the bounded time horizon, r 6|= φ implies that

(i) there is τp ≥ τq with r(τp) satisfying p and r(τq) satisfying q, and
(ii) τq, τp ∈ dom−T (r) and there is no τs ∈ dom(r) such that τp ≤ τs, d(τp, τs) ≤

T and persists (r, τs, s).

The proof is analogous to the unbounded case.



bounded invariance. r 6|= φ implies that

(i) there is τp ≥ τq with r(τp) satisfying p and r(τq) satisfying q, and
(ii) there is a τ with τ ≥ τp such that d(τp, τ) < T and s(r(τ)) is false.

At τp, M can be either in loc1, loc2, or loc3. In loc1, there are two options. If
s holds, then M transitions immediately to loc2 (because p and s are true). If
s does not hold, M can transition to the error state. If M stays in loc2 from
τp to τ , then it can go to the error state because s is false at τ . Whenever p
gets false, time can no longer elapse in loc2, M goes to loc3, and the clock t is
initialized. In loc3, time can elapse for T time units, while ¬p holds. Since the
distance d(τp, τ) < T , M can wait in loc3 until τ , at which point M can go to
error. If p becomes true in loc3, M goes immediately to loc2. By induction, M
always lets time elapse until τ is reached: in loc2 while p holds and in loc3 while
loc3 p does not hold.

A.2 Necessary Conditions.

For the necessary condition, we need to show that a run r in H||M that ends
in location error implies a run in H that violates the property. Let rH be the
projection of the run onto H (removing the locations and clocks of M). It is
straightforward that rH is a run of H. In the following, we show that rH 6|= φ.
Note that r starts in location idle. Note also that any event-times of r are also
event-times of rH .

absence. To get from idle to error, M had to take first a transition with guard
q and then a transition with guard p. Consequently, there exist τq and τp with
τq ≤ τp, q(rH(τq)) and p(rH(τp)). τq and τp are witnesses that violate φ.

absence(timed). To get from idle to error, M had to take first a transition
with guard q, wait for T time units, and then take a transition with guard p.
Consequently, there exist τq and τp with d(τq, τp) ≥ T , q(rH(τq)) and p(rH(τp)).
τq and τp are witnesses that violate φ.

minimum duration. Similarly to the above proof of the absence pattern, we
can stipulate the existence of τq, τp and τ ′p̄ with τq ≤ τp ≤ τ ′p̄, q(rH(τq)),
p(rH(τp)) and ¬p(rH(τ ′p̄)). τq and τp are witnesses that violate case (i).

For case (ii), let τq.1 = first (r, 0, q), so that τq.1 ≤ τq. Without loss of
generality, we can assume that τp is the last event-time on r where M en-
tered loc2, so t = d(τp, τ ′p̄). Because of the transition guard from loc2 to error,
d(τp, τ ′p̄) ≤ t ≤ T . There are two subcases:

(a) If there is no τp̄ with τq.1 ≤ τp̄ ≤ τp and ¬p(rH(τp̄)), we can conclude that
τq.1 = τp.1, where τp.1 = first (r, τq.1, p). In this case, the run in M goes
from idle to loc1 to loc2, so τq.1 = τp.1 = τp. Consequently, d(τq.1, τ ′p̄) =
d(τp, τ ′p̄) ≤ T , which violates case (a).



(b) Otherwise, we have τq.1 ≤ τp̄ ≤ τp.1 ≤ τ ′p̄. We will show that there is a
τ∗ ≤ τp, with d(τ∗, τp) = 0 and where r(τ∗) violates p. Then d(τ∗, τ ′p̄) ≤ T ,
which violates case (b). We now show the existence of τ∗, by first identifying
some τ ′ ≤ τp such that M is in loc1 for all τ ′ ≤ τ ≤ τp, and for which r(τ ′)
violates p. Consider that we can assume that loc1 was entered either from
idle with p being violated (otherwise case (a) applies), or from loc2, which
also means p is violated. Since the transition from loc1 to loc2 is urgent,
p can not hold for any τ with τ ′ ≤ τ < τp where d(τ, τp) > 0 (no time
can elapse while p is true). So there exists a τ∗ with τ ′ ≤ τ∗ ≤ τp with
d(τ∗, τp) = 0.

maximum duration. Let τp be the last event-time on r where M entered loc2.
As the loc2 has invariant p and the transition guard from loc2 to error has the
constraint t ≥ T , we know that at least T time units have elapsed in loc2. That
means that there exist τp and τ ′p so that d(τp, τ ′p) ≥ T without any τp̄ in between
them. Therefore, τq, τp and the absence of ¬p witnesses the violation of φ.

bounded recurrence. Since time can only elapse in loc2 while ¬p and t is reset
on all incoming transitions, we know that ¬p holds for more than T time units,
which violates the property.

bounded response (persisting). Similarly to the above proof of the absence
pattern, we can stipulate the existence of τq and τp. Let τp be the last event-
time on r where M entered loc2. Cycles between loc2 and loc3 take zero time:
because of the urgent transition from loc2 to loc3, s was false during this time,
with the possible exception of switching to true and back to false in zero time
(which doesn’t satisfy the definition of "persists"). Because the transition guard
from loc2 to error has the constraint t > T , we know that more than T time
units have elapsed in loc2. Therefore, τq, τp and the absence of s witness the
violation of φ.

bounded invariance. Assuming that M is in the error location, due to the
guard conditions of the incoming transitions, we know that at some point τ on
the run, s did not hold. If the transition from loc1 was taken, p also held at τ ,
which immediately violates the property.

In loc2, we know from the incoming guard conditions, that p held at some
point τp with τp ≤ τ . Without loss of generality, let τ∗ be the latest (supremum)
point on the run where p holds in loc2: ∀ε > 0,∃τp : d(τp, τ∗) ≤ ε. From τ∗

onwards, ¬p holds. Therefore, time could only elapse loc3, and for no more than
T time units. In consequence, d(τ∗, τ) < T . With the above, we get ∀ε > 0,∃τp :
d(τp, τ) < T + ε. This is equivalent to d(τp, τ) < T , which violates the property.
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