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Abstract— Networks of mobile autonomous vehicles rely
heavily on wireless communications as well as sensing devices
for distributed path planning and decision making. Designing
energy efficient distributed decision making algorithms inthese
systems is challenging and requires that different task-oriented
information becomes available to the corresponding agentsin a
timely and reliable manner. We develop a systems engineering
oriented approach to the design of networks of mobile au-
tonomous systems, in which a cross-layer design methodology
determines what structures are to be used to satisfy different
task requirements. We identify a three-tier organization of these
networks consisting of connectivity, communication, and action
graphs and study the interaction between them. It is expected
that in each functionality of a network, there are certain
topologies that facilitate better achievement of the agents’
objectives. Inspired from biological complex networks, we
propose a bottom-up approach in network formation, in which
small efficient subgraphs (motifs) for different functionalities of
the network are determined. The overall network is then formed
as a combination of these sub-graphs. We show that the bottom-
up approach to network formation is capable of generating
efficient topologies for multi-tasking complex environments.

I. I NTRODUCTION

Design of energy efficient distributed path planning and
data dissemination algorithms in networks of autonomous
vehicles requires understanding of the system and communi-
cation complexity, identifying tasks and their requirements,
and trade off analysis of the performance metrics. Perfor-
mance of a network of vehicles, from the perspective of
achieving goals and objectives in a timely and reliable man-
ner is constrained by their collaboration and communication
structures and their interplay with the vehicles’ dynamics.
The safety and efficiency considerations require that these
networks are endowed with structures that facilitate efficient
information transmission. The objective of this paper is to
develop a framework for the design of efficient information
transmission structures for collaborative mobile agents.

In the field of collaborative control the flow of information
between a group of entities requires different apparatus and is
performed for different goals. Therefore the term ‘network’
is used to describe various structures that cover different
aspects of information transmission. In the high level design,
networks are often modeled as graphs and graph theoretic
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analysis is performed to analyze the performance. Several
works have considered the effects of graph topology on
the convergence of the distributed consensus/gossip based
algorithms for collaborative control applications (e.g.,see
[21], [11], [24], [13] and the references therein). In [2] and
[13], we provided a rigorous evaluation of network topology
effects on the performance of these algorithms and showed
the efficiency of certain small world topologies. The design
philosophy behind these works is that of a top-down design,
i.e. the graphs that optimize a single performance metric or
satisfy a favorable trade-off are selected as the candidates for
the system structure. The results of such analysis are often
asymptotic and valid for large number of agents [9]. There
have also been many works that consider the analysis of
network formation, starting from the local level. The focus
of this bottom-up approach has been to discover how local
preferences and decisions will result in the emergence of real
world networks with properties such as heavy tailed degree
distributions and small world effect [9]. Using any design
philosophy, the intended links are to be realized via low
power wireless media. The lower level design addresses chal-
lenges emanating from realizing the ideal graph topologies
and consists of physical layer, MAC layer and network layer
constraints. Some recent works have addressed cross layer
design for optimizing energy efficiency in wireless sensor
networks for control applications [22], [18]. A crucial point
is that the behavior of low power communication links cannot
be adequately captured via simple on-off binary models
due to asymmetric and unreliable characteristics of wireless
communications [25].

We consider the interdependence of these two levels of de-
sign and develop a systems engineering framework to capture
the design requirements effectively. Our main contribution
is two-fold. First, we introduce a three-tier organizationof
collaborative control networks consisting of connectivity,
communication, and action graphs and study the interaction
between these graphs. We then design a bottom-up archi-
tecture to enhance the performance of such networks and
analyze the networks that result in a hierarchical manner by
merging efficient sub-networks.

The structural implication of the results of our earlier work
on the design of efficient and robust networks as a link
augmentation process [3] indicates that efficient topologies
emerge as the result of two competing processes: minimizing
a notion of distance between the nodes (a global effect)
and making the communication requirements of neighboring
nodes as symmetric as possible (a local effect), i.e. the
local neighborhood of the nodes should be reasonably well-



connected, whereas long range links should provide global
connectivity. To design efficient local connectivity patterns,
in this paper we use the idea of network motifs which
was first proposed in the context of biological networks
[19]. Network motifs are task specific local connectivity
patterns, which exist with much higher frequency in real
biological networks compared to those in random networks.
These are sub-networks of low number of nodes (usually 3-
4) whose persistence in networks, imply their efficiency in
the sense that they optimize certain performance metric in a
local scale. Recently, certain algorithms for determiningsuch
sub-networks using convex optimization methods have been
proposed, which essentially treat the problem as a system
identification problem from equilibrium information [26],
[14]. Such approaches can not be taken in the context of
collaborative vehicles, since the system can not be treated
in equilibrium. Instead, we use a simulation testbed to find
network motifs for local communication structures. Here, the
group mission consists of several tasks such as search op-
eration, data gathering/processing, target finding and leader
follower explorations. Each task gives rise to certain motifs
that are specific to that task and the partial knowledge of
the environment specifications that the agents operate in.
In this way, the most efficient task-specific local topologies
are extracted. Switching suitable graphs when the mode
of operation is changing can be handled by solving the
resulting reachability problem using methods for symbolic
planning such as graph grammars [15], [23]. Based on
such switchings, we also address the effects of split/merge
operations on the spectral characteristics of the resulting
connectivity graphs.

The paper is organized into the following sections. The
basic set up of the problem, the taxonomy of collaborative
control networks and the motif generation algorithm are
presented in Section 2. Section 3 addresses the hierarchical
network formation design and the effects of merging the
motifs on network performance and structure. Simulations
and discussion are provided in Section 4. Section 5 concludes
the paper.

II. TASK-ORIENTED MOTIF SELECTION IN THE

COLLABORATIVE VEHICLES FRAMEWORK

In this section, we describe our systems engineering
based approach to the design of efficient network topologies
for collaborative vehicles. The idea is to capture the task
requirements inaction graphs, form efficient sensing and
communication subgraphs based on trade-offs between the
tasks’ importance, and integrate the topologies in a hierar-
chical manner. The design procedure is depicted in Figure 1.
We consider a group ofn autonomous ground vehicles

over an areaA ⊂ R2, with unknown obstacles and threats.
There is very limited knowledge available regarding the
internal structure or the topology ofA . The vehicles explore
the areaA under little or no direct human supervision,
perform collaborative activities, cover a target areaT ⊂ A ,
while avoiding any obstacles and threats and exchanging
information.

Fig. 1. A systems engineering approach to task oriented topology design

A vehicle detects a moving threat if it is within itsRd

distance, and can be destroyed by the threat if their distance
is less thanRe (<Rd). The vehicles can sense each other and
obtain information about each others’ positions and velocities
if they are within the neighboring distanceRs=Rd. There is a
desired inter-vehicle distanceR0 (less thanRs). The vehicles
are provided with wireless communication radios and can
communicate. The wireless channels are vulnerable to fading
and interference [20]. In this paper, we consider: (a) Physical
layer losses and attenuation (b) Media access layer losses and
contention, which occur as the result of interference, when
multiple nodes are transmitting data simultaneously.

A. Three essential graphs

There are three graphs that describe the network of moving
vehicles: aconnectivity graph, a communication graph, and
an action graph. The first two graphs describe the infor-
mation exchange in the network whereas theaction graph
captures the collaborative task specific requirements.

We order the vehicles and identify each one with its
index. Theconnectivity graphis modeled as a dynamic graph
topologyGc = (V ,E (t)). The vertices represent the vehicles
and there is a bi-directional link between two nodesi and j
with corresponding position vectorspi and p j at time t if

||pi(t)− p j(t)|| ≤ Rs.

By Ni(t), we denote the set of the (connectivity) neighbors

of vehicle i, defined byNi(t)
△
= { j ∈ V (t) : j 6= i,‖pi(t)−

p j(t)‖ ≤ Rs}. We also use the notationj ∼ i, if j ∈ Ni .
Thecommunication graphis also a dynamic graphGcom=

(V ,Ecom(t)) in which the links are uni-directional and exist
whenever the communication between the corresponding
nodes is successful. In simulation studies, it is usually
assumed that based on the allocated energy, the transmission
power is set so that in the case where there is no obstacle,
a communication radiusRc is covered. This model has been
shown to be misleading due to unreliability and asymmetry
of real links and models. More realistic models incorporate
sending and receiving radio parameters as well as the en-
vironmental parameters [25], [16]. It is important to note
that the existence of a communication link is meaningful in
a statistical sense. Furthermore, any time a node’s attempt
to transmit data fails, it starts a re-transmission procedure
until a time-out happens. We assume that a link between
two nodes exists at timet, if and only if the transmission



is successful within the specified time limit[t, t +TTimeout],
whereTTimeout denotes the time-out interval.

The action graphdetermines which node requires access
to which node’s information for a given purpose at a given
time. Action graphs are used to capture the specific require-
ments of each task. In this work, we impose a minimal
constraint of action graphs with strong connectivity for
assuring safe operation of the vehicles.

B. Tasks, motifs, and an algorithm for motif generation

We now determine a framework for extracting connectivity
and communication network motifs for collaborative control
of vehicles. Network motifs were first introduced as building
blocks of complex networks in the context of gene tran-
scription networks [19], [1]. A network motif is a subgraph
that recurs in complex networks with much higher frequency
than in random networks. It is shown that certain subgraphs
of 3 and 4 nodes persist in gene transcription networks by
an algorithm that compared their occurrence versus random
networks. The application of the algorithm to other types of
networks (food webs, neuron connectivity, electronic circuits,
and World Wide Web) suggested that persistent motifs are
task dependent and represent the underlying functionality
of the network. For example, similar motifs can occur in
electronic circuits and food webs, when the underlying
functionality is to provide efficient flow of energy. Also,
biological networks are evolved to address multiple tasks in
a robust manner, i.e. the topologies in biological networks
provide satisfactory performance for conducting multiple
tasks rather than optimizing the conduction of a single task.

The motif selection algorithm can be adopted for the
collaborative control framework, using a (potential) energy
minimization method. The idea is to find small persistent
connectivity and communication topologies that evolve in
the course of missions using the partial knowledge of the
terrain. The algorithm uses the following principles:

1) Task specifications:The tasks to be performed should
be selected. Typical tasks include search and target
finding, tracking, obstacle and threat avoidance, data
gathering, exchange and processing information and
leader follower explorations. In this step task require-
ments are translated into constraints on action graphs.

2) Energy assignment:Energy functions{J j(i)}(n,M)
(i, j)=(1,1)

are attributed to each of theM tasks {Tj}
M
j=1 for

each vehicle. These functions are selected so that
minimizing them would result in task achievement.

3) Task combination:To account for multiple tasks that
each agent should perform, we combine them linearly.
Agent i is assigned with an energy function

Ji,t(pi(t)) =
M

∑
j=1

λ jJ
j
i,t(pi(t))

The weights determine the importance of the tasks and
are used as trade-off parameters in studying the effect
of different tasks on the emerging topology.

4) Randomizing the environment:The exact specifications
of the terrain are often unknown prior to the mission.

Using partial knowledge about the environment, (e.g.
the number of obstacles and threats and their expected
position) expected mission environments are generated.

5) Running simulations:The simulations involve each
node minimizing its corresponding energy function via
gradient descent method,

ṗi(t) =−
∂Ji,t(pi)

∂ pi
. (1)

using only information local in time and space to the
node [6]. Independent simulations are run to average
out the effects of terrain uncertainties.

6) Analysis:The resulting connectivity and communica-
tion subgraphs are analyzed to determine the most
persistent subgraphs in successful missions with valid
action graphs.

We will apply this algorithm to a collaborative control
problem in Section IV.

C. Relays and hierarchical network formation

Our previous work [13], [3] shows that efficient network
structures are locally well-connected and also supplied with
long range links that provide reasonable global connectivity.
Such long range links are implementable using a hierarchical
structure. After designing efficient clusters of small number
of nodes (motifs), each cluster elects a head-node equipped
with multi-mode communication capabilities as well as
longer range sensing devices. These cluster-heads maintain
the cluster’s connectivity with the rest of the network through
communicating with aerial platforms (APs) that act as relays
in the network (See [4] and [5]).

III. SPECTRAL PROPERTIES OF THE HIERARCHICAL

DESIGN

A graph theoretic approach is used to study the connectiv-
ity of the composite graphs determined by the hierarchical
design. The set ofn vehicles and their connectivity (or
communication) network are modeled by a graphG=(V,E).
The nodes of the graph,V = {1,2, ...,n} represent the
vehicles and the edgesE = {l1, l2, ..., le} represent the links.
The connectivity properties of a graph are captured by its
Adjacencyand Laplacian matrices and their spectra. The
adjacency matrix,A is a symmetricn by n matrix with 1
(resp. 0) in the (i, j)th position, if there is (resp. is not) a
link between nodesi and j. We denote the characteristic
polynomial for the adjacency matrix byΦ(G) = det(µ I −A)
and its eigenvalues byµ1 ≤ µ2 ≤ ...≤ µn. The degree of node
i, di is the total number of edges incident to it. LetD be a
diagonal matrix with theith diagonal entry equal todi. The
Laplacian of a graph is defined asL = D−A. The Laplacian
is a positive semidefinite matrix. We denote its characteristic
polynomial byΨ and its eigenvalues byλ1 = 0≤ λ2 ≤ ...λn.

Many structural properties of graphs can be deduced based
on the Adjacency and Laplacian spectra [8], e.g. the lower
the number of distinct eigenvalues ofA, the better the
structural properties of the graph [10]. The distance of the



Fiedler eigenvalueλ2 > 0 from zero determines how well-
connected a connected graph is. Fork−regular graphsλ2 =
k− µn−1 and therefore smallµn−1 is desired. We calculate
the characteristic polynomial of the adjacency matrix of the
hierarchical graph based on those of the starting subgraphs
(ground clusters or motifs) as a generalization of a method
of Gutman [12].

Consider a group of vehicles divided intoN clusters (mo-
tifs) {G1,G2, ...,GN}. Each cluster consists of a few vehicles
and their interconnections. The clusterGi is connected to one
and only one Aerial Platform (AP) in the higher level through
one of its members, a designated cluster-headr(Gi). APs and
their descendent vehicles can form clusters connected to a
higher level AP. The process of going from thek−1st level
to thekth level consists of joining each of the APs in thekth

level to their descendants by a link with the constraint that
each AP in thek−1st level is connected to one and only one
kth level AP. This process is continued till the highest level of
the hierarchy with only one node is reached. Examples of 2
and 3 hierarchies are depicted in Figure 2. The characteristic
function for the adjacency matrix of the hierarchical graph,
Φ(G), is calculated using the following lemma.

(a) A two-level hierarchy (b) A three-level hierarchy

Fig. 2. The hierarchical graph formation process

Lemma 3.1: 1) If two graphs G1(V1,E1) and
G2(V2,E2) are disjoint, and their direct sum is
given byG= G1⊕G2 = (V1∪V2,E1∪E2), then

Φ(G) = Φ(G1).Φ(G2) (2)

2) If the link (i, j) is a bridge in a graph, i.e. its deletion
will add a disjoint component to the graph, then:

Φ(G) = Φ(G−{(i, j)})−Φ(G−{i}−{ j}), (3)

where,G−{(i, j)} is the graph resulting from deletion
of the edge(i, j) and G− {i} − { j} is the graph
resulting from deletion of verticesi and j and the links
incident to them.

Proof: The proof is standard and can be found in [8].

In the case of a 2-level hierarchy (Figure 2(a)), there is one
AP and the ground clusters{G1,G2, ...,GN}, are connected
to the AP byN links. The spectrum of the composite graph
can be obtained using the following theorem.

Theorem 3.1:For a 2-level hierarchical topology, with
N clusters{G1,G2, ...,GN}, the characteristic polynomial is
determined by:

Φ(G) = λ
N

∏
k=1

Φ(Gk)−
N

∑
i=1

∏
k6=i

Φ(Gk).Φ(Gi −{r(Gi)}). (4)

Proof: The proof follows by induction onN. If there
is only one clusterG1 and one AP, using Lemma 3.1, results
in: Φ(G) = λ Φ(G0)−Φ(G0−{r(Gi)}),

If we add a second clusterG2, using Lemma 3.1
yields, Φ(G) = λ Φ(G1)φ(G2)−Φ(G1)Φ(G2 −{r(G2)})−
Φ(G2)Φ(G1−{r(G2)}). Therefore the result holds forN =
2. Now, if the result holds form= N−1, using Lemma 3.1,

Φ(G) = [λ
N−1

∏
k=1

Φ(Gk)−
N−1

∑
i=1

∏
k6=i

Φ(Gk).Φ(Gi −{r(Gi)})]

.Φ(GN)− ∏
k6=N

Φ(Gk)Φ(GN − rN) =

λ
N

∏
k=1

Φ(Gk)−
N

∑
i=1

∏
k6=i

Φ(Gk).Φ(Gi −{r(Gi)}).

Extension to higher levels of hierarchy is immediate at the
cost of more indexing. Consider the case of the 3-level
connectivity hierarchy in Figure 2(b). Each of the gray
shaded clustersG∗

i consists of a first Level AP (cluster-head
in the new setting) and its descendants. Theorem 3.1 can be
invoked again to find the characteristic polynomial for the
composite graph:

Φ(G) = λ
N

∏
k=1

Φ(G∗
k)−

N

∑
i=1

∏
k6=i

Φ(G∗
k).Φ(G∗

i −{r(G∗
i )}),

in which the ith cluster, G∗
i , consists of the AP denoted

by r(G∗
i ) and first level motifs areG0,G1, ...,GN1, so that

Φ(G∗
i ) = λ ∏N1

k=1 Φ(Gk)−∑N1
i=1 ∏k6=i Φ(Gk).Φ(Gi −{r(Gi)}),

andΦ(Gi −{r(Gi)}) = ∏N1
k=1 Φ(Gk).

IV. SIMULATIONS

We illustrate our proposed algorithm by simulating a
scenario consisting of 4 collaborating vehicles, and study
the connectivity and communication networks emerging in
the process forN= 100 independent runs over a randomized
terrain. The tasks that each vehicle should perform, consist
of: reaching a fixed target, obstacle avoidance, collision
avoidance, and moving threat avoidance. We assume that the
vehicles gather and communicate data for a joint estimation
effort. We assume that the action graph needed for this effort
contains bi-directional links{(v0,v3),(v0,v2),(v1,v2)}. The
communication attempts are made when vehicles can sense
each other or a beacon signal indicating the existence of the
others in the range.

The terrain is a 700m×700m areaA with the target area
being the neighborhood of the point (670,670). Only the
number and the approximate size of the obstacles are known
before hand. In the simulations 10 obstacles are generated
uniformly inside the areaA . The vehicles start from around
point (100,100). Six moving threats rotate around the target
on two concentric circles. The detection range isRd = 50m,
and Re = 12.5m. Each vehicle senses other vehicles in a
radius of Rs = 50m. A mission is declared ‘successful’ if
the majority of the vehicles safely reach the target.

Each vehicle maintains a potential functionJi,t(pi) =
λgJg

t (pi(t)) + λnJn
i,t(pi(t)) + λoJo

t (pi(t)) + λmJm
t (pi(t)),
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Fig. 3. Sample mission terrain: Communication graphs for snapshots=
10,21,35

where, Jg
t , Jn

i,t , Jo
t and Jm

t are the component potential
functions relating to the target, neighboring vehicles,
obstacles and moving threats respectively, andλg, λn, λo

and λm are the corresponding weighting factors. Each
vehicle moves in the gradient descent direction according to
Equation (1). The potentials are chosen so that they encode
the intended behavior of the vehicles regarding obstacle
avoidance, keeping distance from neighbors and target
finding correctly. The details for the choice of potential
functions can be found in our previous work [6]. The
parametersλg = 200,λn = 500,λo = 1000, and λm = 1000
are used in this paper.

On the communication side, we model the physical layer
path loss by considering the obstructions occurring in the first
Fresnel zone [7]. We use the IEEE 802.11 based medium
access control (MAC) protocol. The wireless medium is
shared between vehicles using the CSMA/CA mechanism.
We use the UDP protocol at the transport layer, since smaller
delays are desirable for timely decision making, where cer-
tain level of packet transmission errors can be overcome by
aggregating data traffic from all vehicles. In our simulations,
the trajectory determination gradient algorithm (Equation
(1)) is implemented in MATLAB, and the simulation of
the wireless communication network is carried out in the
network simulator software, NS-2.

Figure 3 shows a sample run of the simulation. The
resulting communication graphs at 3 snapshotst = 10,21,
and 35 are magnified in the figure, where only att = 35 the
communication graph is connected. After runningN = 100
simulation runs, 72 successful runs were identified, in which
3 or 4 vehicles reached the target. We identified a list of
the most persistent connectivity and communication motifs.
Figure 4 displays the motif “dictionary” list. Figures 5 and
6 respectively show the percentage of occurrence among the
most persistent motifs in connectivity and communication
graphs in successful missions. We now consider a three level
hierarchical network with 4 APs in which all the vehicle
motifs are in the form ofm1 constructed by the method

m1

m2

m3

m4

m5

m6

m7

Fig. 4. A dictionary of all the connectivity and communication motifs

of section III. Therefore the graph consists of 69 nodes.
Figure 7 shows the eigenvalues of the composite graph. Some
observations follow:

1- The emerging connectivity motifs are well-connected,
i.e. in the successful runs of simulations, the vehicles main-
tain a well-connected topology. This confirms our previ-
ous assertion [3] that efficient networks are locally well-
connected. These locally well-connected graphs should be
interconnected using the hierarchical approach of sectionIII
to minimize a notion of graph distance between geographi-
cally distant nodes as indicated in [3].

2- The emerging communication motifs are mostly dis-
connected. This primarily points out a major shortcoming
of contention-based communication networks for estimation
and control purposes in cluttered environments. Unless the
number of vehicles and the communication demand are
small, IEEE 802.11 based MAC protocols are unable to
address the specifications demanded by the action graph.
Apparently, the terrain obstructions are fatal in scenarios
where the group of energy constrained vehicles need to have
reliable communications. This problem can be addressed by
the hierarchical design of Section III, where aerial vehi-
cles assist in providing connection between distant parts of
the terrain. Another avenue is to consider Stigmergy-based
communication, where vehicles moving on the terrain leave
“traces” that can be used by other vehicles. This approach
has been recently addressed using RFID cards [17].

3-The Fiedler eigenvalue of the composite hierarchical
graph isλ2 = 0.0464. This is an order of magnitude larger
than that of a ring topology over the same number of nodes.
For n= 69, such a graph has Fiedler eigenvalue of 0.0083.
Order of magnitude improvement in Fiedler eigenvalue cor-
responds to better connectivity [2].

V. CONCLUSIONS

In this paper, we provided a three-tier organization of
collaborative control networks consisting of connectivity,
communication and action graphs. We proposed a bottom-up
network formation design methodology based on finding ef-
ficient small subgraphs optimized for effective performance.
We studied the structural properties of the composite graphs
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based on the spectral analysis of the emerging networks. We
also studied the interconnection of the action, connectivity,
and communication graphs in a network of collaborative
vehicles and showed that in complex and cluttered envi-
ronments, these graphs affect each other significantly. An
interesting observation is that conventional communication
schemes are not efficient for collaborative control applica-
tions, where unconventional and implicit communications,
use of stationary and mobile relays and hierarchical design
are to be implemented for satisfactory operation.
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