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Figure 6. (a) Shows the arbitrary 3D groundtruth trajectory of a signal receiving UAV from our hardware experiments, the start position indicated
by blue circle. (b) Corresponding AOA profile obtained for the trajectory using our formulation shows the AOA (strongest signal direction) which
corresponds to the relative direction of the signal transmitter (black antenna) located at groundtruth (�g , ✓g) = ( �90�, 91�) and at a distance of 10
m in line-of-sight. Our system returns AOA ( �̂, ✓̂) = ( �91.5�, 92.5�).

dimension. The wireless channel measurement at time t,
hij(t), which is a complex number capturing the phase and
magnitude of the received signal, can be obtained using
the Channel State Information (CSI) Toolbox [68]. hij(t) =
[hij(tk), . . . , hij(tl)] is thus known at the receiving robot.

Using direction finding algorithms like Bartlett or MUSIC
from antenna array theory [69], the AOA profile Fij(�, ✓)
can be obtained by measuring the signal phase difference of
each array element with respect to the first element at p(tk).
We use the Bartlett estimator we get:

Fij(�, ✓) =

������

tlX

t=tk

hij(t) a(✓,�)(t)

������

2

(4)

Fij(�, ✓) thus refers to relative paths a WiFi signal traverses
between a given pair of signal transmitting robot j and
receiving robot i. Mathematically, it is a 2D matrix calculated
for all possible incoming signal directions along azimuth and
elevation (360 x 180). Thus, henceforth we refer to AOAmax

as the strongest signal direction (�̂, ✓̂), or the AOA peak
corresponding to maximum magnitude path, in the full AOA
profile Fij(�, ✓).

A reference to all notations and terminology can be found
in Appendix section B. Next we formulate the problems that
are addressed in this paper.

4 Problem Formulation

This paper aims to enable robots in a team to infer
relative spatial directions, i.e an Angle-of-Arrival (AOA)
profile Fij(�, ✓) to others in its neighborhood, based on
received communication signals between them. In doing so,
we aim to develop an “inter-robot sensor” for robots to
obtain relative directional information about each other by
analyzing existing communication packets in the network.
We leverage off-the-shelf WiFi modules for this purpose.
Specifically, our goal is to find Fij(�, ✓). Of particular
interest is finding the maximum magnitude path AOAmax,
between the robots referred to as the azimuth angle � and
elevation angle ✓ to a neighboring transmitting robot (see

Fig. 5)‡. Our system uses an approach akin to Synthetic
Aperture Radar for this purpose. Key challenges for applying
SAR-based methods to heterogeneous robot systems that we
aim to address in this paper are:

1. Mobility: Developing a framework to support AOA
profile generation where both the transmitting and
receiving robots are simultaneously mobile along
arbitrary 2D or 3D trajectories during data capture.
This is a commonly encountered scenario in multi-
robot teams that must be accounted for in our SAR
formulation in order to allow for continuous AOA
sensing capabilities amongst the robots.

2. Trajectory geometry: Characterizing informative-
ness, or the impact of robot trajectories on the sen-
sitivity of the resulting phase measurements and the
resulting Fij(�, ✓). We do so by studying the impact
of antenna array geometry on the accuracy of the
AOAmax which is not readily known for arbitrary
shapes such as those generated by arbitrary robot
trajectories.

3. Estimation Noise: Analyzing the effect of trajectory
estimation error on Fij(�, ✓). In real robotic systems it
is possible to obtain local robot displacement estimates
using various tools such as inertial measurements and
VIO, however it is well known that these estimates are
subject to noise. Thus the impact of this estimation
noise on the accuracy of the resulting AOAmax

estimation must be quantified.

4.1 Simultaneous robot motion
As many previous approaches that use SAR to obtain
AOAmax require transmitting robots to remain static during

‡We note that in some cases the strongest signal path may not be the direct
path due to severe absorption of signals. However in this case there exist
many methods for inferring the direct path once Fij(�, ✓) is available [? ].
In this paper we do not address the problem of finding the direct path from
Fij(�, ✓) and rather refer the reader to relevant references for the solution
to this problem.
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Angle-of-Arrival estimation performed onboard

Scientific Impact: 
• Off-the-shelf robots with all 
on-body sensing can perform 
AOA estimation 
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Figure 21. Aggregate results of AOA estimation for 59 hardware experiments. Each experiment records the Intel Realsense T265 tracking camera
trajectory and groundtruth for the receiving robot along with their respective Fij(�, ✓). Groundtruth AOA (�g , ✓g) = ( 0�, 91�). Sub-plot on the left
shows error in � with mean = -0.63 degrees for groundtruth trajectory and -10.03 degrees for tracking camera trajectory. Sub-plot on the right shows
error in ✓ with mean = -0.69 degrees for groundtruth trajectory and 2.23 degrees for tracking camera trajectory. Thus, with high error in estimated
trajectory, the corresponding AOA accuracy is low, compared to that obtained from groundtruth trajectory.

ranges from 0.02m to 0.12m. A total of 50 noisy trajectories
are generated.

Our empirical results support our analytical development
from Lemma 2 and 3 (Sec. 7.2). The corresponding
ATEtrans error generated for simulated trajectories also
shows a increasing linear relationship with AOA error
(Fig. 19). Thus we conclude that trajectories with ATEtrans

in the range (0.02, 0.12) will demonstrate an AOA estimation
error in the range (2,10) degrees in the absence of other
factors that impact Fij(�, ✓).

8.4.2 Hardware experiments: For hardware experi-
ments, we compare AOAmax estimation using pose esti-
mates obtained from Intel Realsense T265 tracking cam-
era against benchmark AOAmax estimates obtained from
groundtruth robot trajectories. Both trajectory types are
simultaneously collected for the receiving robot using the
tracking camera (mounted on the aerial robot) and an exter-
nal motion capture system. AOAmax estimates are calcu-
lated in realtime, while keeping the transmitting robot static
(results involving a mobile transmitting robot are presented
in Section 8.2 and Section 9). Average robot trajectory
lengths are 1.2m per AOA profile generated. Fig. 21 shows a
Kernel Density Estimation (KDE) distribution plot compar-
ing AOA estimation error in � and ✓ for 59 trajectories using
position estimates obtained via tracking camera trajectories
versus the benchmark (obtained using groundtruth trajecto-
ries). The error mean in azimuth angle � and elevation angle
✓ is -0.63 degrees, -0.69 degrees respectively for groundtruth
trajectories, and -10.03 degrees, 2.23 degrees respectively
for tracking camera trajectories. Fig. 20 shows an mean
error of 0.06m for tracking camera trajectories which were
1.2m long on average. Thus the results shown in Fig. 21
represent average AOAmax estimation error for trajectories
with an average of 5.0% estimation error. We note that our
benchmark results represent an empirical lower bound for
AOAmax estimation error attainable using robot trajectory
estimation techniques with improved position estimation
accuracy in the presence of other factors (e.g. trajectory
geometry) that impact Fij(�, ✓).

9 Application Study

Dynamic rendezvous between ground/air robots
In this section, we demonstrate the performance of our
system for a complete experiment of multi-robot rendezvous
task between a UAV (signal receiving) and a ground
robot (signal transmitting), so as to evaluate the utility of
our system for a multi-robot coordination application that
involves a heterogeneous team of robots. Our evaluation is
based on the following three criteria:

• System performance in presence of occlusions: We
verify that the UAV can navigate towards the
ground robot using relative AOAmax by continuously
generating AOA profiles Fij(�, ✓) in realtime, even
when the ground robot is occluded.

• Performance of our system in the presence of moving
ends: We verify that the UAV continues it’s navigation
accurately even when the ground robot starts to move.

• Impact of trajectory geometry: Following the develop-
ment in Sec. 7.1 we calculate the informativeness of
trajectory geometry for each iteration of 3D SAR as
the UAV navigates towards the ground robot.

Experimental setup: We consider an environment of size
300 square meters with one aerial and one ground robot
separated by distance 15m and visual occlusions due to
a wall of cardboard boxes. We note that these occlusions
block visual line-of-sight but are penetrable by WiFi signals.
Motion capture is used to provide displacement information
for the UAV (robot i). Information about the position of the
ground robot (robot j) is not known to robot i who solely
uses obtained AOA information from its measured Fij(�, ✓)
to track robot j. True AOA is obtained between robot i and j

using their respective positions from motion capture system.
At the start of the experiment, the robots are separated

by a distance of 15m (Fig. 22 (a)). The UAV, after take-
off, starts to successfully navigate towards the ground robot,
that is initially static, using relative AOAmax obtained from
wireless signal information and a simple waypoint motion
controller (Fig. 22 (b)). The ground robot then starts to move
and gets visually occluded by obstacles (Fig. 22 (c)), but
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