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MOTIVATION AND PROBLEM STATEMENT SYSTEM-LEVEL ARCHITECTURE ERROR COMPARISON

. Enormous network resource demands of V2X Communications IS a
serious challenge to make it fully scalable, as required by real-world
applications.

. Proposed Model-Based Communications and Networking methodology
makes phenomenal performance Improvements In wireless channel
utilization compared to the state-of-the-art techniques, i.e. adaptive raw
data communication. 4

. Generating precise models iIs the first key task to realize this idea. [

. Bayesian Non-Parametric Inference approaches are evidently
appropriate solutions for precise adaptive model construction. [

. Sticky-Switching Linear Dynamical Systems-Hierarchical Dirichlet [
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Process-Hidden Markov  Model (Sticky-SLDS-HDP-HMM)  1Is
nominated In this work as a non-Parametric Bayesian-Stochastic Hybrid
System (SHS) approach which continuously tracks the joint vehicle-
driver behaviors and updates the model by adding/removing
necessary/unnecessary states on the fly.
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