Multi-Robot Cyber-Physical System for Assisting Young Developmentally-Delayed Children in Learning to Walk Eugene C Goldfield^{1,2}, Evelyn Park¹, Jiyeon Kang³, Hao Su¹, Paul Stegall³, Wen-Hao Hsu^{1,2}, Daniel L Miranda^{1,2}, Mustafa Karabas¹, Sunil K Agrawal³, Conor J Walsh¹ ¹Wyss Institute for Biologically Inspired Engineering at Harvard University, ²Boston Children's Hospital, ³Columbia University # Challenges of Assisting Young Developmentally-Delayed Children Learn to Walk: - Stabilizing medio-lateral body sway while promoting opportunities for exploratory behavior - Developing gait that exploits exchange of potential and kinetic energy ## Solution: A Modular Multi-Robot Cyber-Physical System (CPS) - Wearable robot module - Applies assistive torques to the hip joints to assist limb movement - Scaffold module - Applies forces to the pelvis via cables to modulate and stabilize center of mass movement Overview of the multi-robot system, consisting of the wearable robot module (orange rectangle area) and scaffold module (blue rectangle area) ### Scientific Impacts: - Modular, computationally distributed design - Modules may be used individually or in combination - Tailors assistance to the specific has been needs of a developmentally-delayed child - Interoperability of modular components Multi-robot system architecture, consisting of high level controller (xPC Target), wearable robot and scaffold modules #### **Broader Impacts:** - Designed for children with cerebral palsy (CP) or stroke - Potentially applicable for clinical populations of adults - We are currently assessing the safety and efficacy of the system - Design and fabrication has provided learning opportunities at all levels of education, and for a diverse group of students Acknowledgement: This work is supported by NSF CPS No. 1329363, awarded to Harvard University and Boston Children's Hospital, and by the Wyss Institute for Biologically Inspired Engineering at Harvard University