

CPS: Medium: Multi-Scale Planning in Robot Teams for Persistent Monitoring and Intervention in Precision Grazing Ryan K. Williams¹, Pratap Tokekar², and Ben Tracy¹ -- ¹Virginia Tech, ²University of Maryland Award # NIFA 2018-67007-28380, Awarded Oct. 2018

Challenge:

 Autonomous monitoring and active intervention in a new paradigm of precision grazing practices.

Solution (Year 2):

- Bayesian LSTM architecture to learn and predict complex forage dynamics.
- •Full simulation environment for forage simulation, UAV monitoring, neural networkbased prediction, and UAV temporal planning.

LSTM-based Bayesian forage prediction (predicted-left, target - right)

High-fidelity forage simulation (left) and height perception (right).

Scientific Impact:

ha.

 Intersection of novel techniques from decision theory, risk-aware path planning, neural networks, combinatorial optimization, and field robotics.

Broader Impact:

•Pasturelands are an integral part of agricultural production in the United States, covering 48 million

 Maximizing pastureland use will improve the profitability and ecological sustainability of livestock farming.