
Multi-domain Modeling of Cyber-Physical Systems
Using Architectural Views

Ajinkya Bhave, Bruce Krogh
Dept. of Electrical & Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15217

{jinx, krogh}@ece.cmu.edu

David Garlan, Bradley Schmerl
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15217
{garlan, schmerl}@cs.cmu.edu

Abstract—Designing cyber-physical systems (CPSs) increas-
ingly requires the use of multi-domain models throughout the
development process. Ensuring consistent relationships between
various system models is an important part of an integrated
design methodology. This paper describes an architectural ap-
proach to reasoning about relations between heterogeneous
system models. The run-time base architecture of the system is
used as a unifying representation to compare the structure and
semantics of the associated models. Each model is related to the
base architecture through the abstraction of an architectural view,
which captures structural and semantic correspondences between
model elements and system entities. The use of the architectural
view framework to relate system models from different domains
is illustrated in the context of a quadrotor air vehicle.

Keywords-architectural views; multi-domain modeling; cyber-
physical systems; component-connector;

I. INTRODUCTION

Today’s complex cyber-physical systems (CPSs) are created
using models throughout the system development process,
an approach referred to as model-based development (MBD)
[7]. Models allow designers from different disciplines to
develop and evaluate design alternatives within the context
of formalisms relevant to selected aspects of the system.
Each representation highlights certain features and occludes
others to make analysis tractable and to focus on particu-
lar performance attributes. A particular modeling formalism
typically represents either the cyber or the physical elements
well, but not both. For example, differential equation models
represent physical processes well, but do not represent natu-
rally the details of computation or data communication. On
the other hand, discrete formalisms such as process algebras
and automata are well suited for representing concurrency
and control flow in software, but are not particularly useful
for modeling continuous phenomena in the physical world.
Thus, the heterogeneity of elements in CPSs requires multiple
perspectives and formalisms to explore the complete design
space. Ensuring consistent relationships between various sys-
tem models is an important part of the integrated MBD
methodology.

We have developed the CPS architectural style as a system-
level representation that is not prejudiced towards either the
cyber or the physical side [2]. Architectures are annotated
structural representations that describe systems at a high level

of abstraction, allowing designers to determine appropriate
assignment of functionality to elements, evaluate the com-
patibility of the parts, and make trade-offs between different
quality attributes such as performance, reliability, and main-
tainability. This paper describes how the CPS architecture for a
system provides a unified point of reference for multi-domain
models based on heterogeneous formalisms. Our approach is to
define relationships between system models at the architectural
level, rather than developing a universal modeling language or
a meta-modeling framework for translating between models
from different formalisms. We believe that an architectural
approach provides the right level of abstraction: one that
captures the structure of and interdependencies in a system
without attempting to comprehend all of the details of any
particular modeling formalism.

The next section describes the use of the CPS architectural
style to define base architectures for cyber-physical systems.
The STARMAC quadrotor is introduced as a case study in
this section. Section III introduces the concept of architectural
views as means of relating heterogeneous models to a common
base architecture. In Sect. IV, we illustrate the creation of
three heterogeneous views in the context of the STARMAC
quadrotor. Section V describes related work in this area,
and the concluding section discusses ongoing work to extend
our approach to represent and analyze multi-domain model
consistency for CPSs.

II. A UNIFYING ARCHITECTURAL REPRESENTATION

Architectures are often represented using a collection of
architectural perspectives, which represent a set of related
concerns [3]. The component-and-connector (C&C) perspec-
tive models a system as an annotated graph of components
and connectors, in which the components represent principal
computational and physical elements of a system’s run-time
structure, the connectors represent pathways of communication
and physical coupling between components, and annotations
represent properties of the elements [10]. In this work, the
term ‘architecture’ is synonymous with a C&C architecture,
because all the modeling formalisms of interest to us focus
on analyzing properties and behavior of entities defined in
the C&C architecture of the system under study. The CPS
architectural style is defined in the C&C perspective.



Fig. 1. Base Architecture of the STARMAC quadrotor.

Current C&C architectural styles, which focus primarily on
software and computational infrastructures, are not compre-
hensive enough to describe a complete CPS. A CPS contains
physical elements in addition to cyber entities, and includes
elements representing interactions between these two domains.
We have addressed this shortcoming through the development
of a CPS architectural style [2] that augments traditional
cyber architectures with elements corresponding to physical
dynamics and laws. This architectural extension allows us to
create a run-time representation of the complete CPS, called
the system’s base architecture (BA). The BA of a CPS is an
instance of the CPS architecture style, which contains all the
cyber and physical components and connectors that constitute
the complete system at runtime.

The BA should contain enough detail to convey the nature
of information and physical quantities flowing between com-
ponents. In addition, the communication mechanism between
components and relations between physical variables should be
defined by the appropriate connectors. For new CPSs, the BA
is built during the design phase from validated requirements
and system specifications. For legacy CPSs, the BA is inferred
from the implemented system, existing documentation and
system models, and the knowledge of the system designers. In
either case, we assume that the BA evolves as the design of the
CPS evolves, throughout the system development lifecycle.

The following example of a real-time, embedded, multi-
loop feedback system, will be used to illustrate the concepts

of architectural views and their relation to the BA. The
Stanford Testbed of Autonomous Rotorcraft for Multi-Agent
Control (STARMAC) [6] is a quadrotor platform developed
to test algorithms that enable autonomous operation of aerial
vehicles. The aircraft has four rotors for actuation, arranged
symmetrically about its body frame. The vehicle has a sensor
suite consisting of an inertial measurement unit (IMU), a
Global Positioning System (GPS) unit, and sonar. It imple-
ments a hierarchical control system, with a low-level attitude
controller (AC) and a high-level position controller (PC). A
remote ground station controller (GSC) generates reference
trajectories for the quadrotor to follow, and has joysticks for
control-augmented manual flight. The two onboard controllers
communicate through a serial link. Communications between
the PC and the GSC are managed over a WiFi network, using
the UDP protocol.

Figure 1 illustrates the BA for the quadrotor. This BA was
created from the STARMAC implementation. The complete
run-time architecture is modeled in the CPS style, which
allowed us to represent both the cyber components (control
algorithms and real-time software) and the physical dynam-
ics (forces and torques imparted to the vehicle frame from
physical sources). A more detailed description of the complete
quadrotor CPS architecture is provided in [2].



Fig. 2. How do we relate multi-domain models of a CPS?

III. ARCHITECTURAL VIEWS

A CPS is typically described and analysed using multi-
domain models, where each model focuses on a fixed set
of concerns about the underlying system. Figure 2 shows
four models of the STARMAC quadrotor that represent the
same system from the physical, control design, software, and
hardware domain perspectives.

In virtually all analysis tools, such models are constructed as
collections of interacting components or modules. Thus, each
model has a structure that can be viewed as an architecture
with syntax and semantics defined by the particular formalism
underlying the design of the tool. Our goal is to define
consistent relations between these models at some level of
abstraction.

The approach proposed here focuses specifically on archi-
tectural views which represent the architectures of system
models as abstractions and refinements of the underlying
shared BA. In this context, well-defined mappings between
a view and the BA can be used as the basis for identifying
and managing the dependencies among the various models
and to evaluate mutually constraining design choices. The BA
thus becomes the repository for retaining results from various
analyses and designs so that the interdependencies are explicit.

This gives us the ability to reason about relations between
models by studying their individual mappings to the BA of
the system.

Current tools do not provide insights into the relationships
between such heterogeneous models of a CPS. This represents
a problem for architectural modeling, since it is generally im-
possible to understand how design decisions or analyses in one
view impact those of another. From a structural perspective,
an architectural view supports the description of a derived
architectural model to abstract over details that are irrelevant
for a particular analysis. The following definition formalizes
the concepts of the BA and architectural views that we have
described informally thus far.

Definition 1. An architectural view V for a modeling formal-
ism M is a tuple < CV ,RM

V ,RV
BA > where:

• CV is the component-connector configuration of the view,
with the types, semantics, and constraints defined by the
modeling formalism of the view

• RM
V is a relation that associates elements in the model

with elements in CV
• RV

BA is a relation that associates elements in CV with
elements in the BA

Figure 3 shows the conceptual relationship between system



Fig. 3. Relationship between models and the BA through views.

models, views, and the BA, based on definitions ?? and 1.
The relationships between elements in a model and entities
in the BA will not generally be one-to-one. RM

V is either
one-to-one or an encapsulation of model entities, as defined
by the modeler’s choice of grouping. It effectively creates a
“componentized” version of the model and allows grouping
of multiple elements in the model to a single element in
the view. RV

BA is an encapsulation/refinement relation, which
enables the system architect to group specific components
and connectors in the view and map them to subparts of
the BA. Some correspondences are declared explicitly by the
architect while other correspondences are inferred, based on
the semantics of the underlying view formalism.

One-to-many (encapsulation) and many-to-one (refinement)
maps are allowed. However, many-to-many maps are not
allowed since this can lead to inconsistent connections being
hidden inside the encapsulated components.The component-
connector structures resulting from carrying out element en-
capsulations on a view and on a BA are called an encap-view
and an encap-BA, respectively.

IV. ARCHITECTURAL VIEWS OF THE QUADROTOR

This section describes how heterogeneous models of the
quadrotor can be related to the BA through architectural
views. The choice of the modeling domains is motivated
by the analysis and verification activities typically found in
the design process of embedded control systems. In this
case, the STARMAC design team documented the software
subsystems and the hardware architecture of the vehicle [].
We modeled the quadrotor physical dynamics in MapleSim
from first principles, as well as studying the vehicle dynamics
from existing control system models in Simulink.

A. Control View

From a control engineer’s perspective, the quadrotor system
can be viewed as a signal flow (Simulink) model. The position
and attitude controller components in the BA are represented
by the Robostix and emphGumstix subsystems in the Simulink
model. The vehicle dynamics are represented by the star-
mac dynamics block, and the GPS and IMU sensors are
defined by the Superstar II and the 3DM blocks, respectively.
Figure 4 illustrates the creation of the control view from
a Simulink model. The relation RM

V maps each top-level
Simulink block to a component, and each group of signal lines
between them to a connector, resulting in the control view’s
CV .

The semantics for the CV are derived from the underlying
signal flow semantics of the Simulink metamodel. For exam-
ple, every connector in the control view represents a (cyber
or physical) signal. Hence, semantically equivalent connectors
between two components in the BA can be mapped to a
single connector in the control view under this particular
RV

BA. The mapping of four cyber-physical (C-P) connectors
between the attitude controller and an encapsulated component
(containing VehicleFrame) in the BA to a single connector
between Robostix and Starmac in the view is shown in Fig.
5.

We disallow many-to-many maps between macro elements
because the following type of situation could arise. Suppose
that the architect decided to group the Robostix, Gumstix,
and GPS components of the control view as one macro
element. The architect also groups the position controller,
attitude controller, and GPS components in the BA into a
single element, and associates it with the macro element in the



Fig. 4. Creating the control view from a Simulink model.

view. An inconsistent connector existing between Robostix and
GPS (highlighted in Fig. 5) will be hidden away in the macro
view element, and will not be detected if the control view and
BA are compared for some type of consistency check.

B. Process Algebra View
Finite State Process (FSP) [8] is a process algebra that

models behavior is modeled in terms of event patterns that
denote sets of event traces, called processes. Each event in a
trace represents a discrete transition of a system. In general,
FSP captures the behavior of cyber elements fairly well, while
physical elements are described by abstracting away their con-
tinuous dynamics. The components in an FSP view are those
entities whose behavior can be described by an FSP primitive
process. A connector between two FSP components signifies
that the two processes interact with each other through events
and describes the protocol for that interaction, again as an FSP
process.

The FSP specification of the quadrotor currently abstracts
the dynamics of the quadrotor and focuses on the communi-
cation between the ground station and position controller. The
process algebra view is created by mapping each view entity
to an FSP process in the specification, as shown in Fig. 6.
The Gnd Station component is mapped to the GroundStation
process, which specifies how the GSC sends setpoints to
the PC. The QuadRotor component is mapped to the Posi-
tionController process that describes how the ideal closed-
loop quadrotor responds to position setpoints. The connector
between Gnd Station and QuadRotor is mapped to an FSP
process that specifies the communication protocol between the
two. The connector can be one of two types: a lossy connector
represents a wireless UDP link, while a lossless connector with
retry models a wireless TCP. Having alternative connector
protocols allows us to compare the behavior of the overall
system depending on the protocol of the connection.

The mapping between the process algebra view and the
BA is shown in Fig.7. The abstraction of vehicle dynamics is
represented in the encapsulation of all the physical components
in the BA into a single QuadRotor component in the view.

C. Physical View

The physical view models the dynamics of the vehicle
in terms of the forces and torques applied by the rotors to
the vehicle frame. The nonlinear dynamics of the quadrotor
helicopter are those of a point mass m with moment of inertia
Ib ∈ R3×3, location ρ ∈ R3 in inertial space, and angular
velocity ω ∈ R3 in the body frame. The vehicle undergoes
forces F ∈ R3 in the inertial frame and moments M ∈ R3 in
the body frame, yielding the equations of motion,

~F = −DB~eV +mg~eD +

4∑
i=1

Ti~zB

~M =

4∑
i=1

Ti(~ri × ~zB)

where DB is the aerodynamic drag force, Ti is the thrust from
the ith rotor, ri is the distance between the vehicle center of
mass and the ith rotor, and g is the acceleration due to gravity.

The CPS style enables the formal representation of such
dynamic behavior in the overall system architecture. The dy-
namics model of the quadrotor is implemented in the Modelica
language, and the semantics of the CV are defined in terms
of non-causal interconnections between the effort and flow
variables of each attached component’s ports.

The mapping between the physical view and the BA is
shown in Fig. 9. The set of view components map to a subset
of the elements in the BA.



Fig. 5. Mapping between control view and BA.

Fig. 6. Creating the process algebra view from an FSP specification.

V. RELATED WORK

Multiple efforts have focused on supporting multi-view,
model-based system development. The SAE AADL (Archi-
tecture Analysis and Design Language) is an international
standard for predictable model-based development of real-
time and embedded computer systems [5]. AADL offers a
set of predefined component categories to represent real-time
systems and it is capable of describing functional component
interfaces like data and control flows, as well as non-functional
aspects of components like timing properties. However, AADL
does not support architectural representation of physical do-
main entities (except as generic ‘device’ components), nor
does it address how heterogeneous views can reconciled.

Ptolemy II is a tool that enables the hierarchical integration
of multiple “models of computation” in a single system,

based on an actor-oriented design [1]. Even though Ptolemy II
supports hierarchy and incorporation of multiple formalisms
at the detailed simulation level, it is not possible to define
architectural styles or high-level design tradeoffs. In addition,
there is no support for acausal, equation-based modeling of
physical systems, since the underlying formalism is event-
based communication.

The Vanderbilt model-based prototyping toolchain provides
an integrated framework for embedded control system de-
sign [9]. It provides support for multiple views, such as
functional Simulink/Stateflow models, software architecture,
and hardware platform modeling along with deployment. The
toolchain’s ESMoL language has a time-triggered semantics,
which restricts the functional view to Simulink blocks that
can only execute periodically. There is currently no support



Fig. 7. Mapping between process algebra view and BA.

Fig. 8. Creating the physical view from a Modelica model.

for additional views (e.g., physical or verification models), nor
a notion of consistency between additional system views. In
contrast, our work focuses on architecture-level view compar-
ison, not on meta-modeling or model transformations.

SysWeaver [4] is a model-based development tool that
includes a flexible code generation scheme for distributed
real-time systems. The functional aspects of the system are
specified in Simulink and translated into a SysWeaver model
to be enhanced with timing information, the target hardware
model and its communication dependencies. The translation
from Simulink is not completely automated if closed-loop
controllers are present. Sysweaver’s computational framework
semantics is restricted to tasks that exchange information
via message-passing (time or event-based). There is also no
support in SysWeaver for a physical plant modeling view.

VI. DISCUSSION

Once we have the ability to relate heterogeneous system
models to the BA through the mechanism of architectural

views, several research issues arise.

First are the rules that determine what kinds of encapsula-
tions are permitted. For instance, while it is natural to abstract
over a set of elements in constructing a view, issues arise when
some of those elements are cyber and some are physical, lead-
ing to elements with properties of both. A second issue arises
when combining multiple connectors: connector abstractions
that combine multiple connectors into a single one in the view
are necessary, but this leaves open how best to handle the
respective interfaces. Additionally, questions similar to those
for components arise when combining connectors representing
cyber and physical interactions.

A third issue arises when a view is better represented in a
different architectural style than the baseline. This can occur
when a specific analysis uses an architectural model with a
more specific vocabulary of types of elements, and possibly
additional constraints on their interconnection. Restrictions on
the relationships between such styles are needed, and some



Fig. 9. Mapping between physical view and BA.

form of style consistency will need to be prescribed.
More generally, to aid in handling complex systems it

should be possible to create various compositions (e.g., inter-
sections and unions) of views. At present there is no such view
specification language or calculus of views that would permit
such flexible projections. There is also the problem of view
update: how to reconcile the changes (and analyses) in one
view with those in other views. In general, there may be many
possible updates that are consistent with the changed view.
Consistency in view update and integration is particularly im-
portant in the domain that we are addressing, since we plan to
use the CPS architecture to identify and resolve dependencies
between the analyses and design decisions carried out through
different views.

The exploration of these issues form the next steps in our
approach to multi-domain modeling using architectural views.

ACKNOWLEDGMENT

This work is supported in part by National Science Foun-
dation (NSF) under grant no. CNS0834701 and by Air Force
Office of Scientific Research (AFOSR) under contract no.
FA9550-06-1-0312.

REFERENCES

[1] S. S. Bhattacharyya, E. Cheong, and I. Davis. Ptolemy II heterogeneous
concurrent modeling and design in java. Technical report, 2003.

[2] A. Bhave, D. Garlan, B. Krogh, A. Rajhans, and B.Schmerl. Augmenting
software architectures with physical components. In Proc. of the
Embedded Real Time Software and Systems Conf. (ERTS2 2010), 19-21
May 2010.

[3] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little,
R. Nord, and J. Stafford. Documenting Software Architectures: Views
and Beyond. Addison-Wesley, 2002.

[4] D. de Niz, G. Bhatia, and R. Rajkumar. Model-based development
of embedded systems: The Sysweaver approach. IEEE Real Time
Technology and Applications Symposium, pages 231–242, 2006.

[5] P. H. Feiler, D. P. Gluch, and J. J. Hudak. The architecture analysis and
design language (aadl): An introduction. Technical Report CMU/SEI-
2006-TN-011, Software Engineering Institute, Carnegie Mellon Univer-
sity, Feb 2006.

[6] G. Hoffman, S. Waslander, and C. Tomlin. Quadrotor helicopter
trajectory tracking control. In Proc. of the AIAA Guidance, Navigation,
and Control Conference, 2008.

[7] A. Ledeczi, A. Bakay, M. Maroti, P. Volgyesi, G. Nordstrom, J. Sprin-
kle, and G. Karsai. Composing domain-specific design environments.
Computer, 34(11):4451, 2001. doi:http://dx.doi.org/10.1109/2.963443.

[8] J. Magee and J. Kramer. Concurrency: State Models and Java Program-
ming, Second Edition. Wiley, 2006.

[9] J. Porter, P. Volgyesi, N.Kottenstette, H.Nine, G.Karsai, and J. Szti-
panovits. An experimental model-based rapid prototyping environment
for high-confidence embedded software. In RSP ’09: Proceedings of the
2009 IEEE/IFIP International Symposium on Rapid System Prototyping,
pages 3–10, Washington, DC, USA, 2009. IEEE Computer Society.

[10] M. Shaw and D. Garlan. Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, 1996.


