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Goals of Project

* Thoroughly investigate mobile transportation and home
health care systems with a model predictive feedback
control approach based on spatiotemporal context

* Investigate human in the loop control
* Develop fundamental scientific solutions for mobile CPSs

* Driving applications are saving energy in workstations,
home healthcare, and vehicular taxi systems
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Two Research Themes

* Fundamental CPS science
— Systems of systems
— Human-in-the-Loop
* Improve CPS applications
— Taxi Systems
— Save Energy on Workstations

— Home Health Care
— |ICU
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Integration of CPSs in Smart Homes

Patient: Lois Peters, 83

Smart Home Health
Medical History:

Thermostat Care M

Major Depression

Security
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Human-in-the-Loop CPS

Medication Fluid Intake
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Nutrition
Control




Detecting Primary and Secondary
Conflicts in Mobile Medical Apps

* Motivation
— There will be 2.03 billion ““é + F !

smart p_hone usersin 2015 e eiioms o e
worldwide

— 500 million smart phone E . }. @
users will download e ey s ""*'*"’j(”')'v“ " B
healthcare apps by 2015 s oz

* Challenge
— These medical apps are human-in-the-loop apps

— They may conflict due to conflicting interventions:
* Drug + Drug
* Drug + Non-Drug (e.g., food/exercise)
* Non-Drug + Non-Drug
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Human-in-the Loop Architecture
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Static Analysis (High Level Params)

3 apps: /%
5 apps: 62%

10 apps: 99%

Z.:: Probability of Conflict

High Level Parameters



Z: Probubilicy of Ceunflict
ol —

Static Analysis (Low Level Params)




Taxi Ridesharing

® O
w fi— 70%
Wasted
1.3 Passengers/ride in NYC
1.4 Passengers/ride in Shenzhen

Reduce Mileage Sharing Capacity
State of the Art Our Approach
T_,-Sharej @ uberPOOL Oy /@ =
ICDE 2013 UberPool 2014 - k=4 8
* Ad Hoc Services * Demand Modeling
* Heuristic Matching * A Set of Optimizations

* Lacking Generalization * Generalization to Other Logistics



System Design and Optimization

coRide: Cloud Server

emand Modeling:
(Dmodel)

Ride Matching:

(coRide

e Practical Constraints
 NP-Hard
* Optimal
* 2-Approximation
e Online



Field Study and Tra,ce drlven Evaluation
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MPC Approach to Taxi Dispatching

* Input: estimated passenger demand in each region, a supply
model, a trip model.

* Output: the region to which every unoccupied taxi should go at
each step.

e Cost measures: idle cruising distance, mismatch of supply/
demand ratio

* Control requirement: process passenger requests as much as
possible, with minimal idle distance.

* Approach: a multi-objective optimization problem formulation,
applying the Model Predictive Control idea that utilizes both
historical and real-time GPS information, consider both current
and future costs.



Data-Driven Robust Taxi Dispatch

e Motivation

— predicted future demand helps balance supply and demand,

reducing idle driving distance
— but demand uncertainties based on real data affect result

e Goal

— a dispatch approach considers model uncertainties when making
dispatch decisions

* Challenge

— NP-hard robust optimization 3convex optimization

[ Spatiotemporal
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Pick-up Events, occupancy status and GPS readings
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Data-Driven Robust Taxi Dispatch

Solution:

robust optimization with demand model as uncertain parameters
Objectives:

balance supply demand ratio and reduce idle mileage

Algorithm: proved equivalent form of standard convex optimization,
solvable in polynomial time

min. max min max... min max

X1 rleA X212 r2eA T X7T.L7 rTeA fg Costs dlstrlbutlon of dispatch solutions
g Z (T (X*) + BIp(XE, %) aE>4O ° *non-robust solutions
‘= 30 " 1 erobust solutions
B 8
k T

_;E (ZX e 1TX.’2—X£“.1n+L§)“> S 20
st (LFHT = 1T x* — X*1, + (LFT)PF, 810

17 x*% — x*1,, + (LM > 0, é .

XiWij < mX, E 9216 20 24 28 32 36 40 44 48 52

XE>0, i,je{1,2,...,n} Cost range

ﬁﬁl‘l Computer Science 15

at the UNIVERSITY ¢f VIRGINIA



Wireless Network Research for

Mobile CPS

 Wireless Network Control
for Stable Performance

* Long term estimation for
performance stability

* Stabilize Reliability and
Latency

* Global coordination + local
control

* Adaptive Control Analysis
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Mobility Scheduling

* Energy Charging

* Maximize task coverage under
real-time constraints

* Cluster tasks based on their
location and urgency

e Cluster tasks along the traveling
path

* Outperform existing solutions (a) Cluster Dependency (b) Path Dependency
by 10% in coverage, and by 85%
in tardiness
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Future Work

* Robust control under uncertainty

 Fundamentals of modeling and control for
numans in the loop

e Supported by NSF CNS1239483
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