
  

Figure 6: Top: Average controller magnitude for the static (green) and adaptive (blue) trust cohorts. We see that the adaptive 
cohort requires a significantly (p < 0.01) diminished average controller magnitude than the static cohort in the final maze 
configuration.  Key : * p < 0.05 and ** p < 0.01. Bottom: Evolution of the average controller magnitude per trial. We see a 
significant decrease in the required average controller magnitude both in users whose final trust value was lower (p < 0.01) and 
higher (p < 0.05) than the initial estimate, demonstrating that the results hold regardless of whether the initial control authority 
allocation is an over- or under-estimate of the user’s expertise
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Figure 4: Respective benefits of two procedures for deriving controllers: Optimal Control and Learning from Demonstration.
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How much should a person be allowed to interact with a controlled machine?

GOAL

Figure 1: Our goal is to algorithmically resolve the 
tension between the need for stability and the need 
for performance.

Mutually Controlled Motion

Idea:  Derive control behaviors via optimal control, while.... 
 Engaging the human operator for corrective 

demonstrations via physical guidance.

Challenge:  The operator may destabilize the system.
                     This risk changes from operator to operator.

A Science of Trust

Solution:  Verify derived controllers for stability and robustness.
 Compute a formal measure of trust in the operator.

                 This trust measure decides how much control to cede to the operator during 
physical correction.

Result:  A computable notion of trust → The system assesses the safety of the instruction.

Mutually Stabilized Correction in Physical Demonstration
PI (lead): Todd Murphey, Northwestern University

Co-PI: Brenna Argall, Northwestern University
PI: Magnus Egerstedt, Georgia Institute of Technology

Aim:  Balancing the ability of a person to direct a cyber-
physical system, against the system's representation of its 
own capabilities and limitations.

Why?  Physical interactions with cyber-physical systems 
need to be understood in terms of shared autonomy, 
where the embedded software and the human together have 
to interface directly with the system dynamics.

How?  Develop a science of trust, that bridges human 
operator capabilities and physical system safety. 

For cyber-physical systems, an understanding of each by the 
other is of crucial importance. The human operator needs to 
understand the automated system order to provide good 
shaping guidance and sound control input. The automated 
system needs to understand the quality limitations of the 
guidance and controls provided by the operator.
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Figure 2: Trust (T) is based on both the Cyber and Physical 
components of the system, and informs how both the 
computer (C) and the operator (O) control the machine (M).

Figure 3: Trust-based interactions in multi-agent 
teams. Trust evolves according to how much an 
agent's neighbor is assisting in achieving their inter-
agent goal. The state dynamics and trust dynamics 
are coupled, such that the trust values weight the 
standard gradient-descent based state update laws. 
Plots depict a two-agent rendezvous task. The solid 
trajectories show the agents' states when the sum of 
the initial trust values is positive, causing the two 
agents to reach an agreement asymptotically. The 
dashed trajectories correspond to a negative initial 
trust sum, resulting in diverging states in finite time.

Assessments

Platforms:  Underactuated articulated rigid bodies → easily destabilized.

Goal:  By the end of this project, an operator will be able to physically manipulate any of the rigid body 
configurations of the experimental testbed to produce a desired motion, while getting feedback from the 
automatic control system about the stability of that motion.

Figure 5: The simulated crane system (above) can be 
controlled in real-time, with an operator in the loop, and 
the control system in the Robot Operating System (ROS) 
automatically updates a trust measure and modulates the 
amount of control authority provided to the operator. This 
system was used in a subject study with 22 participants to 
evaluate adaptive versus static methods for computing the 
trust metric (results in Figure 6). 

Relevance to Cyber-Physical Systems

Impact:  Cyber-physical systems for which (i) control authority is shared between the human and machine, (ii) the machine automation is 
adaptable by and able to receive instruction from a human who is not an automation expert, (iii) there are physical, possibly destabilizing, 
interactions between the human and machine.

Domains:  Immediately impacted: Rehabilitation, assistive devices, and human augmentation. Near-term impact: Manufacturing, which 
will soon involve skilled workers working side-by-side with robots and teaching robots tasks. More broadly: Non-mechanical but highly 
interconnected systems, such as air traffic control and power grid management. Such systems are often too complex to understand 
completely, yet the operator still must provide instruction that is feasible for the system to reliably execute.

Relationship to CPS Needs: Interaction and potential interference among CPS and humans, by explicitly reasoning about when to cede 
control authority to a human operator, and when to request instruction for stability assistance. Cross-disciplinary collaborative research, by 
building a synergy between the areas of data-driven machine learning and formal control theory. Jointly modeling the interaction of both 
cyber and physical components, by taking steps to quantify the level of understanding needed by the human to provide effective corrections, 
and by explicitly computing the system's understanding of the consequences of physical or interaction during instruction. Incorporating CPS 
science into education, by incorporating CPS-centric coverage in the Control of Mobile Robotics MOOC taught by co-PI Egerstedt.
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