
NCSWT: An Integrated Modeling and Simulation Tool for
Networked Control Systems

Emeka Eyisi*, Jia Bai*, Derek Riley**, Jiannian Weng*, Yan Wei*, Yuan Xue*,
Xenofon Koutsoukos* and Janos Szipanovits*

*Institute for Software Integrated Systems
EECS Department

Vanderbilt University
Nashville, TN, USA

**Department of Computer Science
University of Wisconsin-Parkside

Kenosha, WI, USA

ABSTRACT
This paper presents the Networked Control Systems Windtunnel
(NCSWT), an integrated modeling and simulation tool for the
evaluation of networked control systems (NCS). NCSWT inte-
grates Matlab/Simulink and ns-2 using the High Level Architecture
(HLA). Our implementation of the NCSWT based on HLA guaran-
tees accurate time synchronization and data communication in het-
erogenous simulations. NCSWT uses the Model Integrated Com-
puting (MIC) techniques to define HLA-based model constructs
such as federates representing the simulators and interactions be-
tween the simulators. NCSWT also uses MIC techniques to define
models representing the control system and network dynamics for
the rapid synthesis of simulations.

Categories and Subject Descriptors
I.6.7 [SIMULATION AND MODELING]: Simulation Support
Systems—Environments

General Terms
Design, Experimentation

Keywords
Modeling, Simulation, Networked Control Systems, HLA

1. INTRODUCTION
Networked control systems (NCS) have gained increasing atten-

tion in recent years due to their cost effective and flexible applica-
tions [6]. NCS are often employed in critical settings, therefore the
assurance of properties such as stability, performance, safety and
security are essential. Currently, many NCS are designed without
considering the effects of the network operating environment (e.g
time-varying delays and packet losses). Such limitations in the sys-
tem design phase can lead to catastrophic consequences when the
actual systems are deployed as the overall system behavior depends
on network dynamics and uncertainties.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HSCC’12, April 17–19, 2012, Beijing, China.
Copyright 2012 ACM 978-1-4503-1220-2/12/04 ...$10.00.

As NCS become increasingly complex, it becomes more chal-
lenging to formally analyze their performance, stability, safety and
security properties. As a result, there is a pressing need to evaluate
both the control and network components of NCS together for a
rapidly growing number of applications, such as unmanned aerial
vehicles (UAVs) and industrial control systems. Simulation is a
powerful technique for evaluation and can be used at various de-
sign stages, but it requires the support of appropriate tools during
both the design-time and run-time stages in order for the process to
be efficient and less prone to errors.

Currently, several simulators have been used for NCS but have
limited capabilites. For example, Matlab/Simulink is a popular tool
for the evaluation control systems [3]. Although network simula-
tion is provided in Matlab/Simulink using toolboxes such as True-
Time [7], the accuracy of the simulation depends on the level of
abstraction of the network protocol models. Specifically, TrueTime
only supports link layer protocols but not higher level protocols
such as TCP or UDP protocols, which are essential for simulating
the communication network of a NCS. Packet-level network sim-
ulators such as ns-2 [2], provide a detailed implementation of the
network stack for packet level data transmission. Yet, using only
ns-2 for NCS evaluation requires the control algorithm to be fully
implmented in a high-level language such as C++. This becomes
very difficult as the complexity of the NCS increases. In order to
develop a realistic and accurate simulation of NCS, we need a mod-
eling and simulation environment that can integrate existing tools
for the simulation of the control dynamics as well as the networking
system of a NCS.

The integration of existing tools for the simulation of NCS, al-
though very beneficial, faces several challenges. The first challenge
is the design-time scalability of modeling NCS. This involves the
ability to rapidly design and model NCS of various complexity and
size. The second challenge is time synchronization of the heteroge-
nous simulation components during execution. Given that the sim-
ulators operate in potentially different time scales using disparate
time models, time synchronization between the simulators is crit-
ical to preserve the correctness of the simulation. The third chal-
lenge involves the data communication between the simulators to
ensure consistent data semantics during the simulation. Finally, the
fourth challenge involves the run-time scalability which is the abil-
ity of the simulation environment to handle the simulation of large
and complex NCS.

In order to address these challenges, we present an integrated
modeling and simulation tool for NCS, called the Networked Con-
trol Systems Wind Tunnel (NCSWT) [1], which combines the net-
work simulation capabilities of ns-2 with the control design and
simulation capabilities of Matlab/Simulink. NCSWT addresses the

challenge of design-time scalability of modeling NCS by adopt-
ing the Model Integrated Computing (MIC) techniques [12]. MIC
is an approach for the development of complex software systems,
applicable in all phases of system design and maintenance. The
key idea in MIC is to create Domain-Specific Modeling Languages
(DSMLs) using a meta-modeling framework, and then, describe
objects in terms of the domain-specific models. We present three
DSMLs which abstract a NCS simulation from three design views
at two levels: at the low level are the simulation models for the con-
trol subsystem and the networking subsystem of a NCS, defined
by the the Control Design Modeling Language (CDML) and the
Network Design Modeling Language (NDML) respectively; at the
high level is the NCS integration model, based on the High Level
Architecture (HLA) standards, defined by the NCSWT model in-
tegration language (NCSWT MIL). The DSMLs, developed using
the Generic Modeling Environment (GME) [15], facilitate the rapid
design and modeling of NCS. The DSMLs are designed to ensure
the consistency of data semantics among the simulators used in the
simulation of a NCS.

NCSWT addresses the challenges involving time synchroniza-
tion and data communication by adopting the High Level Archi-
tecture (HLA) for the implementation of the run-time simulation
environment [14]. HLA is a standard for simulation interoperabil-
ity that allows independently developed simulations, each designed
for a particular problem domain, to be combined into a larger and
more complex simulation. In HLA, the independent simulators are
known as federates and the larger simulation formed by the inter-
connection of the federates is known as the federation. The HLA
standard provides a set of services to accurately handle time man-
agement and data distribution among the independent simulators.
NCSWT utilizes the time management services provided by the
HLA to ensure that the time model in the control system simulated
in Matlab/Simulink and the time model in the networking system
simulated in ns-2 are synchronized. NCSWT also utilizes the data
distribution services to ensure the correct exchange of data between
the simulations of the control dynamics and communication net-
work of a NCS.

Finally, we demonstrate the NCSWT tool through an evaluation
in Section 4. We list the required software packages for NCSWT
tool and discuss the design-time efficiency and run-time efficiency
for a specific NCS case study.

2. RELATED WORK
Several efforts have been made towards integrating multiple sim-

ulators in order to effectively simulate NCS. A tool chain Picc-
SIM was developed in [13], that allows the integration of Mat-
lab/Simulink models with ns-2. PiccSIM also provides a graphical
user interface for the design of networked control systems and the
automatic code generation of ns-2 and Matlab/Simulink models.
In [9], a special simulator coupling, implemented in C/C++ is used
to integrate the simulators, ModelSim, Matlab/Simulink and ns-2
to establish the communication between the simulators. Other tool
integration projects also targeted for NCS include [10] [5] [8] and
references therein.

NCSWT differs from these other simulation tools for NCS in
multiple aspects. First, our integration of Matlab/Simulink and ns-2
for the simulation of NCS is based on the HLA standard, and hence,
ensures a correct and valid NCS simulation. Secondly, our model-
based approach provides a clear model of NCS architecture that
tightly integrates the control design and communication network
in NCS providing a well-defined abstraction of the information ex-
change between the two subsystems. Such a design-time modeling
environment that supports NCS integration is not available with ex-

isting tools. As a result, the interactions between the control system
and networking components are described in an ad-hoc manner, re-
sulting in possibly error-prone designs. Finally, the design-time
efficiency and automatic code generation based on DSMLS is a
strong feature of our tool.

In [16], we presented a preliminary version of NCSWT which
is substantially different from the current version. First, the early
work in [16] is a pure run-time simulation environment while the
current version presents an integrated modeling and simulation tool
suite. Second, the current version has a new run-time environment
implementation based on only Linux compared with the Linux-
Windows-based implementation presented in [16]. This revision
eliminates the need of using TCP sockets to perform a proprietary
communication protocol between the two simulators and signifi-
cantly improves the run-time efficiency.

3. NCSWT

Figure 1: Overview of NCSWT

Figure. 1 shows an overview of the NCSWT tool architecture.
The architecture is composed of two main parts, the design-time
models and the run-time components. We provide a brief descrip-
tion of NCSWT, a more detailed description of the tool along with
extensive experimental validations and results from case studies are
provided in [1].

3.1 Design-Time Models
In Figure. 1, the design-time models are used to define the NCS

and its components in order to facilitate the simulation of a NCS at
run-time. The design-time models are defined by three DSMLs.

3.1.1 NCSWT Model Integration Language (NCSWT
MIL)

The NCSWT MIL specifies the NCS in terms of HLA-based
constructs, such as federates representing the simulators for each
of the components of the NCS and interactions representing the
communication between the simulators. A model created using
NCSWT MIL is refered to as the base architecture of the NCS.
From the base architecture model, the executables for configuring
the run-time environment for a specific NCS are generated. The
NCSWT MIL is an extension of the work in [11] which introduces

a DSML for HLA-based simulations. The NCSWT MIL describes
the tight coupling between the control design and the networking
subsystems of the NCS by defining how the two subsystems inter-
act. Two types of federates can be modeled in the NCSWT MIL,
the CDFederate and the NDFederate. The CDFederate models an
instance of the Matlab/Simulink simulator for each corresponding
control design component of NCS while the NDFederate models
an instance of the ns-2 simulator for simulating the communication
network of NCS.

Three type of interactions can be modeled in the NCSWT MIL
to represent information exchange in NCS, NetworkInteraction,
CrossLayerInteraction and ControlDesignInteraction. The Net-
workInteraction models the exchange of packets over the commu-
nication network. The CrossLayerInteraction models the informa-
tion exchange between the network and application layers of a net-
work protocol stack and the ControlDesignInteraction models the
information exchanged between components of the control system
that are transmitted or received, by other means other than the com-
munication network.

3.1.2 Control Design Modeling Language (CDML)
The CDML defines the modeling concepts for specifying the dy-

namic behavior of the control design components. These include
the dynamics of the plant (system to be controlled) and the digital
controller. A model created by CDML is a refinement of the base
architecture model of a NCS, created in the NCSWT MIL, with
the details regarding the dynamics of the control system added. In
order to maintain consistency with the base architecture model de-
fined in the NCSWT MIL, a model transformation is used to trans-
form the base architecture model to a model in CDML. Then the
control design concepts in CDML are used to specify the dynamics
of the components in the NCS. In CDML, using a set of model-
ing primitives such as Ts (Sampling Time), ModelName, ModelLi-
braryName etc., a user can specify the model and parameters that
define the dynamic behavior of a control system component. Us-
ing the defined parameters in CDML, executable Matlab/Simulink
code can be generated for implementing the control system.

3.1.3 Network Design Modeling Language (NDML)
The NDML defines the modeling concepts for specifying the dy-

namics of the communication network. This includes the capacity,
loss rate models, routing and other additional properties to realize
a communication network. Similar to CDML, a model transforma-
tion is used to transform the base architecture model to a model in
NDML. Then the concepts defined in NDML are used to specify
the network properties for the NCS. A user can specify the trans-
port agent, loss model of network links and other various network
properties to simulate the network dynamics. Run-time network
configuration and model scripts can then be generated based on the
defined parameters for deployment on ns-2.

3.2 Run-Time Components
In Figure. 1, the run-time components represent the main soft-

ware components and interfaces for the actual realization of a sim-
ulation using the HLA framework. These components include the
Run-Time infrastructure (RTI), the federates, and all the necessary
configuration and glue code for the interfaces as well as monitoring
tools for visualizing and evaluating the results.

3.2.1 Run-Time Infrastructure (RTI) and Federates
The RTI, an implmentation of the HLA standard, manages the

coordination of time and data passed between federates. Using in-
teractions, federates communicate between each other through the

RTI. A number of commercial and academic RTI implementations
are available. Currently, we use Portico 1.0.2, an open source cross-
platform HLA implementation which supports both C++ and Java
clients [4].

Each federate represents a single instance of the corresponding
simulator’s interface to the RTI. For example, the NDFederate is a
software component that interfaces the ns-2 simulator with the RTI.

We briefly describe the NCSWT run-time services provided by
the RTI.
(a) Time Synchronization: In a HLA-based federation, each fed-
erate has its own logical time. The RTI preserves the causality of
the federation by ensuring that no simulation receives an event that
occured in the past relative to its own. The RTI ensures the accurate
progression of time through the use of a time advance grant request
(TAR) and time advance grant (TAG) mechanism [16]. For ns-2,
this mechanism is integrated into the ns-2 scheduler while in Mat-
lab/Simulink, the mechanism is integrated as part of the interface
code to the Matlab federate.
(b) Data Communication: The RTI uses a publish-and subscribe
mechanism for passing messages through the federation in order
to ensure the consistent data communication and coordination be-
tween the federates [16]. The type of messages exchanged between
the federates are defined by the interactions modeled in the NC-
SWT MIL during the design-time and is integrated in the generated
code deployed during the run-time simulation.

4. EVALUATION
The simulation of a NCS using the NCSWT tool requires two

major steps. The first step involves the modeling of NCS using the
three DSMLs discussed in Section 3.1, followed by the generation
of all the necessary models, configurations and glue code for the
simulation of the NCS. This step is performed on a computer run-
ning a Windows operating system. The second step involves the
deployment of the generated models, configurations, and glue code
followed by the execution of the simulation. This step is performed
on a computer running a Linux operating system.

The NCSWT tool requires the software packages as shown in
Table 1. Matlab/Simulink and ns-2 are used for the simulation of
the control design and networking subsystems of the NCS respec-
tively. Portico 1.0.2 is the RTI implementation of the HLA used
for running the federation. GME is the graphical environment used
for the modeling and generation of all the necessary components
for the simulation of the NCS. UDM is utilized in the model trans-
formations from NCSWT MIL to CDML and NDML. Microsoft
Visual Studio is used for the execution of the code generators and
model transformations from the three DSMLs. Eclipse is used for
the compilation of the run-time components required for the simu-
lation. We have evaluated the NCSWT tool using various NCS case

Table 1: Required Software Packages
1. Matlab/Simulink, www.mathworks.com
2. ns-2, http://isi.edu/nsnam/ns
3. Portico 1.0.2, www.porticoproject.org
4. Generic Modeling Environment (GME),
www.isis.vanderbilt.edu/Projects/gme
4. Universal Data Model (UDM),
www.isis.vanderbilt.edu/tools/UDM
5. Microsoft Visual Studio 2008 or later,
www.microsoft.com/visualstudio
6. Eclipse, www.eclipse.org

studies some of which include a NCS composed of a single plant

www.mathworks.com
http://isi.edu/nsnam/ns
www.porticoproject.org
www.isis.vanderbilt.edu/Projects/gme
www.isis.vanderbilt.edu/tools/UDM
www.microsoft.com/visualstudio
www.eclipse.org

and controller and a NCS composed of multiple plants and multiple
controllers with asynchronous sampling times [16].

We present some results for a single linear continuous-time plant
and single linear discrete-time controller NCS. This NCS involves
the digital control of an unmanned aerial vehicle (UAV), represent-
ing the plant, over a 802.11b wireless network to track a desired
trajectory. In order to provide insights about the efficiency of us-
ing the NCSWT tool, we present the design-time efficiency and the
run-time efficiency. For the design-time efficiency, we consider the
amount of code that is automatically generated for simulating the
NCS. Table 2 provides a summary of the size of code and mod-
els that are automatically generated from the design-time models.
For the run-time efficiency, we consider the actual time it takes to

Table 2: Generated Code for NCS Example
Files Size
1. Matlab models 100 Kilobytes
2. Matlab glue code 132 Kilobytes
3. ns-2 model and topology scripts 20 Kilobytes
4. ns-2 glue code 160 Kilobytes
5. Federation startup script 4 Kilobytes

simulate the NCS. Table 3 shows the time durations for simulating
the NCS in various multi-hop network topologies and in the pres-
ence of network uncertainties such as packet loss and time varying
delays. The time durations shown in the table are the actual times
required to run 100 seconds of logical simulation time.

Table 3: Time Efficiency for NCS Example
Scenarios Actual Duration

(in minutes)
Nominal 5.5

Packet Losses 20% 8.4
30% 11.4
40% 13.5

Multi-hop Network 3 hops 17.4
4 hops 22.2
5 hops 26.2

5. CONCLUSION
We presented the integration tool, NCSWT for the modeling and

simulation of networked control systems. We described the HLA-
based approach guiding the tool’s implementation as well as the
MIC techniques for the rapid synthesis of components required for
the simulation of a NCS. Additionally, we provided an evaluation
of tool.

6. ACKNOWLEDGEMENT
This work is supported in part by the U.S. Army Research Of-

fice (ARO W911NF-10-1-0005), the National Science Foundation
(CNS-1035655, CCF-0820088) and Lockheed Martin. The views
and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the U.S.
Government.

7. REFERENCES
[1] NCSWT: An Integrated Modeling and Simulation Tool for

Networked Control Systems.
http://vanets.vuse.vanderbilt.edu/
dokuwiki/doku.php?id=research:cps.

[2] The Network Simulator ns-2.
http://isi.edu/nsnam/ns/, 2004.

[3] MATLAB, The Language of Technical Computing.
http://www.mathworks.com, 2008.

[4] Portico RTI. http://www.porticoproject.org,
2010.

[5] A. Al-Hammouri, M. Branicky, and V. Liberatore.
Co-simulation Tools for Networked Control Systems. Hybrid
Systems Computation and Control, Lecture Notes in
Computer Science, 4981:16–29, 2008.

[6] P. Antsaklis and J. Baillieul. Special Issue on Technology of
Networked Control Systems. Proc. of the IEEE, 95(1):5–8,
Jan. 2007.

[7] A. Cervin, M. Ohlin, and D. Henriksson. Simulation of
Networked Control Systems Using TrueTime. In Proc. 3rd
Int. Wkshp. on Networked Control Systems: Tolerant to
Faults, 2007.

[8] M. Hasan, H. Yu, A. Carrington, and T. Yang. Co-simulation
of wireless networked control systems over mobile ad hoc
network using SIMULINK and OPNET. IET Comm.,
3(8):1297 –1310, Aug. 2009.

[9] U. Hatnik and S. Altmann. Using ModelSim,
Matlab/Simulink and NS for Simulation of Distributed
Systems. Int. Conf. on Parallel Computing in Electrical
Engineering, 0:114–119, 2004.

[10] O. Heimlich, R. Sailer, and L. Budzisz. NMLab: A
Co-simulation Framework for Matlab and NS-2. In 2010
Second Int. Conf. on Advances in System Simulation
(SIMUL), pages 152 –157, Aug. 2010.

[11] G. Hemingway, H. Neema, H. Nine, J. Sztipanovits, and
G. Karsai. Rapid synthesis of high-level architecture-based
heterogeneous simulation: a model-based integration
approach. SIMULATION, 2011.

[12] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty.
Model-Integrated Development of Embedded Software.
Proc. of the IEEE, 91(1):145–164, Jan 2003.

[13] T. Kohtamaki, M. Pohjola, J. Brand, and L. Eriksson.
PiccSim Toolchain - Design, Simulation, and Automatic
Implementation of Wireless Networked Control Systems. In
IEEE Conf. on Networking, Sensing, and Control, 2009.

[14] F. Kuhl, J. Dahmann, and R. Weatherly. Creating Computer
Simulation Systems: An Introduction to the High Level
Architecture. Prentice Hall PTR, 1999.

[15] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett,
C. Thomason, G. Nordstrom, J. Sprinkle, and P. Volgyesi.
The Generic Modeling Environment. Wkshp. on Intelligent
Sig. Proc., May 2001.

[16] D. Riley, E. Eyisi, J. Bai, Y. Xue, X. Koutsoukos, and
J. Sztipanovits. Networked Control System Wind Tunnel
(NCSWT)- An evaluation tool for networked multi-agent
systems. In 4th Int. ICST Conf. on Simulation Tools and
Techniques (SIMUTools 2011),, March 2011.

http://vanets.vuse.vanderbilt.edu/dokuwiki/doku.php?id=research:cps
http://vanets.vuse.vanderbilt.edu/dokuwiki/doku.php?id=research:cps
http://isi.edu/nsnam/ns/
http://www.mathworks.com
http://www.porticoproject.org

