

GIRLS: Girls Immersed in Robotics Learning Simulations

PIs: Florence Sullivan, UMass, Amherst, Beryl Hoffman, Elms College Personnel: Lissie Fein, Andrew Pasquale, Holyoke Codes; Research Assts: Isabel Castellanos, Ali Söken, Özkan Yildiz

UMass Amherst NSF NRI FND #1830450 Elms College #1830179

HOLYOKE

NSF GIRLS Challenge and Solution

Challenge: Interest middle-school Latina students in CS and co-robotics

Original Solution: create an in-person co-robotics curriculum with a narrative of helping a community in Puerto Rico prepare and respond to a hurricane.

Modified Solution due to COVID-19: build a virtual co-robotics game and curriculum to prepare and respond to a hurricane with a fleet of virtual robots and drones.

http://galeforcegame.com

GaleForce Narrative

Students join the GaleForce Robotics Disaster Relief Team to help San Juan, PR to prepare and recover from a hurricane.

The characters Dr. Jackson and Nalia tell the story surviving Hurricane Katrina and becoming emergency managers in PR.

Unity 3D Game

Students choose avatars and enter a 3D Unity control room to work in teams to deploy virtual robots and drones in remote-controlled or coding missions such as evacuation, delivery of supplies, clearing debris from roads, or rescuing lost pets.

Collaborative Coding Environment

The game uses a Scratch-like collaborative block-based programming environment with supports for calculating map distances.

Backend Data Collection

Student code is automatically saved in a Firebase database.

Online tools allow researchers to search through the database of collected artifacts and teachers to see their students' progress.

Teaching Materials

Teaching materials are available at https://galeforcegame.com/teachers/:

- CSTA Standards
- Lesson Plans
- Slide decks
- Supplemental activities like machine learning

https://cv-recognize-objects.glitch.me/

Pilot Study Summer 2021

Research Questions:

- 1) Does the GaleForce Online Robotics Adventure Game lead to **higher interest and self-efficacy** in co-robotics and computer science?
- 2) Does the GaleForce Online Robotics Adventure Game lead to improved student content knowledge in co-robotics and computer science?
- 3) And how do children engage with the GaleForce Online Robotics Adventure Game and **collaborate with each other** in order to solve robotics challenges?

Participants, Setting and Data Collection

Participants and Setting

- Eleven 8-9 year old students from the Holyoke Boys and Girls Club (6 girls).
- Five day vacation camp, three contact hours per day.
- Students worked in pairs to solve co-robotics challenges.
- Only 8 students completed content and survey pre-post.

Data Collection

- Audio recordings of student collaborative discussions while solving missions.
- Completed programs.
- Pre-post robotics content test.
- Pre-post self-efficacy/interest survey.

Data Analysis

- Gain scores pre-post content test.
- Gain scores self-efficacy/interest survey.
- Descriptive analysis of completed programs.
- Codebook development for analysis of collaborative discussions.
 - Sixteen codes:
 - six CS learning codes
 - five game-based codes
 - five interaction codes

Scientific Impacts: Results

- Seven of eight students posted gain scores on the content test, ranging from 11% 39%.
- Seven of eight students posted gain scores on the self-efficacy/interest survey from 13% -50%.
- Students engaged productively in pair programming, with most pairs completing 12-15 missions.
- Students relied on concrete referents in the virtual world to reason about writing their programs, as opposed to in-game scaffolds.

Scientific Impact: Pre/Post Content Knowledge & Interest Survey

Table 1 - Missions Completed and Gain Scores

Avatar Name/Student Gender (F/M)	Total Missions Completed	% Gain Pre-post test	% Gain Interest in CS Survey
storm/blueberry - F	14	33.33%	25%
Nightbooks* - F	13	11.11%	25%
Toga - F	12	16.67%	19%
Wonder - F	5	16.67%	50%
Echo - M	15	11.11%	25%
Titan - M	14	38.89%	13%
Fade - M	12	-5.56%	25%
CHIMP - M	7	22.22%	-6%

Scientific Impact: Average Gains and S.D.

Table 2 - Average Gains and Standard Deviation

	Average Gain Score (as %) Content Test	S.D. (as %) Content Test	Average Gain Score (as %) Interest Survey	S.D. (as %) Interest Survey
Females	20.00%	8.43%	29.75%	13.79%
Males	16.67%	16.67%	14.25%	14.63%

Increase in post-survey "I like working with robots"

Increase in "I am able to do well in robotics"

Increase in "Interested in Jobs in Computers"

Scientific Impacts: Collaborative Learning

- Collaborative data analysis is ongoing, preliminary results indicate the following:
 - Over 40% of the discussions revolved around algorithmic operations and variables.
 - E: Drive forward 80.
 - T: No, we need to follow the curve for 20
 - 19% of the comments made regarded knowledge reflections indicating student awareness of possible solutions.
 - T: Don't change it.
 - E: Good, we're almost done.

Scientific Impact: Main Takeaways

Pilot Study Main Takeaways:

After Engaging with the GaleForce Game...

- 1) All students improved their performance on a robotics content test, with girls averaging a slightly higher gain than boys.
- 2) All students' interest and self-efficacy in CS improved, but especially girls, whose average interest gain was almost 30% from pre-post.
- 3) Students relied on the visual element of the game to reason about programming.
- 4) Preliminary collaborative learning results indicate that children primarily discussed the development of algorithms during pair programming.

Broader Impacts

- What is the impact on society?
 - Broaden participation of girls and Latinx students through a first responder co-robotics game.
- Education and Outreach
 - This is an educational game, freely available online at <u>http://galeforcegame.com</u> with teacher materials, outreach through CSTA.

http://galeforcegame.com