
M3SoRo - Mobility and Morphing using Modular Soft Robots

Vishesh Vikas, University of Alabama and Barry Trimmer, Tufts University

www.arl.ua.edu

Multi-limb reconfigurable MSoRos

Research Objectives

Learning mobility (locomotion) principles

- Discretization captures factors dominating robot-environment interaction
- Infer 'reduced model' and mobility principles

• Conform to surfaces for increasing area of contact

- Repetitive, inter-changeable
- Impact resistant
- Inert to environmental Improved Robustness changes (e.g., PDMS)
 - Costs low due to large scale production
- Single-unit cost low –silicone Lower costs polymer robot bodies

Challenges

• Hardware. Actuator-SoRo integration, onboard electronics and inter-modular docking

using dominant interactions

Morphology and design of reconfigurable modules

- Limb topology design, mechano-geometric **docking** using platonic & Archimedean solids
- Stiffness mismatch between soft boy and rigid-flexible actuators (e.g., motor-tendons)

Environment-centric control and adaptation

- Metamorphosis between rolling-ball (3D), sheet (2D) or snake-like rod (1D)
- Environment learning through data-driven database construction and gait optimization

Scientific Impact

- Mobility principles for complex environments. Reduced order models (ROMs) learn factors
- *Control.* 'Environment-centric' using motion primitives and ILP optimization problem
- *Morphing* of multiple modules with different design primitive (3,4 or 5 limbs)
- Application-specific. complex, adverse (heatcold) environments, economic cost

Technology Impact

Promising solution where terrain is unknown and unstructured.

MSoRos swarms have potential applications to the fields of disaster relief (search & rescue operations), space exploration and precision agriculture.

Education Impact

Soft robots easy to disseminate as safe to operate. Encourage students toward STEM, robotics.

Excite young minds. Connect illustrations of Transformers, Big Hero 6 with real-life morphing soft robots.

that dominate robot-environment interaction

- Open-source untethered MSoRos. These will enhance versatility, robustness and costeffectiveness of traditional robots
- Environment awareness and reconfiguration. Task specific morphing of collective MSoRos

Research Impact

Understanding locomotion in unknown, unstructured environments.

Hybrid control models. 'Environment-centric' exploratory learning with 'model-centric' knowledge.

2021 NRI & FRR Principal Investigators' Meeting

