NRI: FND: Robust Inverse Learning for Human-Robot Collaboration

Project URL: http://thinc.cs.uga.edu

Challenges

- Co-bots working with humans trained using passive demonstrations in real-world scenarios
- The demonstrations by human experts have confounding elements, occlusion, and occur in uncontrolled settings
- The human experts may interleave different ways of solving a given task exhibiting differing preferences

Approach

- Hierarchical Bayes model for IRL in partially-controlled settings
- Develop online learning, incremental learning IRL algorithms
- Maximum entropy multi-task IRL algorithm

Scientific Impacts

- Relax knowing the expert's true trajectory due to perception noise. Exploit indirect data sources toward IRL
- A framework and new method for online IRL
- Generalizes well-known MaxEnt IRL to multi-task environments with unknown task labels

Broader Impacts

- Reduce the deployment time of apprentice robots
- Expand IRL applicability to more natural and continuous task demonstrations in environments that cannot be controlled

Inverse RL in Partially-Controlled Settings

> A general hierarchical Bayesian model that captures the uncertainty present in observations during expert agent demonstrations in partially controlled, real-world situations to perform apprenticeship learning.

20

10

30

g 20

₹ 15

10

- Generalize the E-step of HiddenDataEM to environmental and sensing noise to compute a distribution over possible demonstrations X given the observations
- > Deal with partially controlled environments by finding the expert's trajectory distribution and exploiting indirect observations.

Experiment 1:

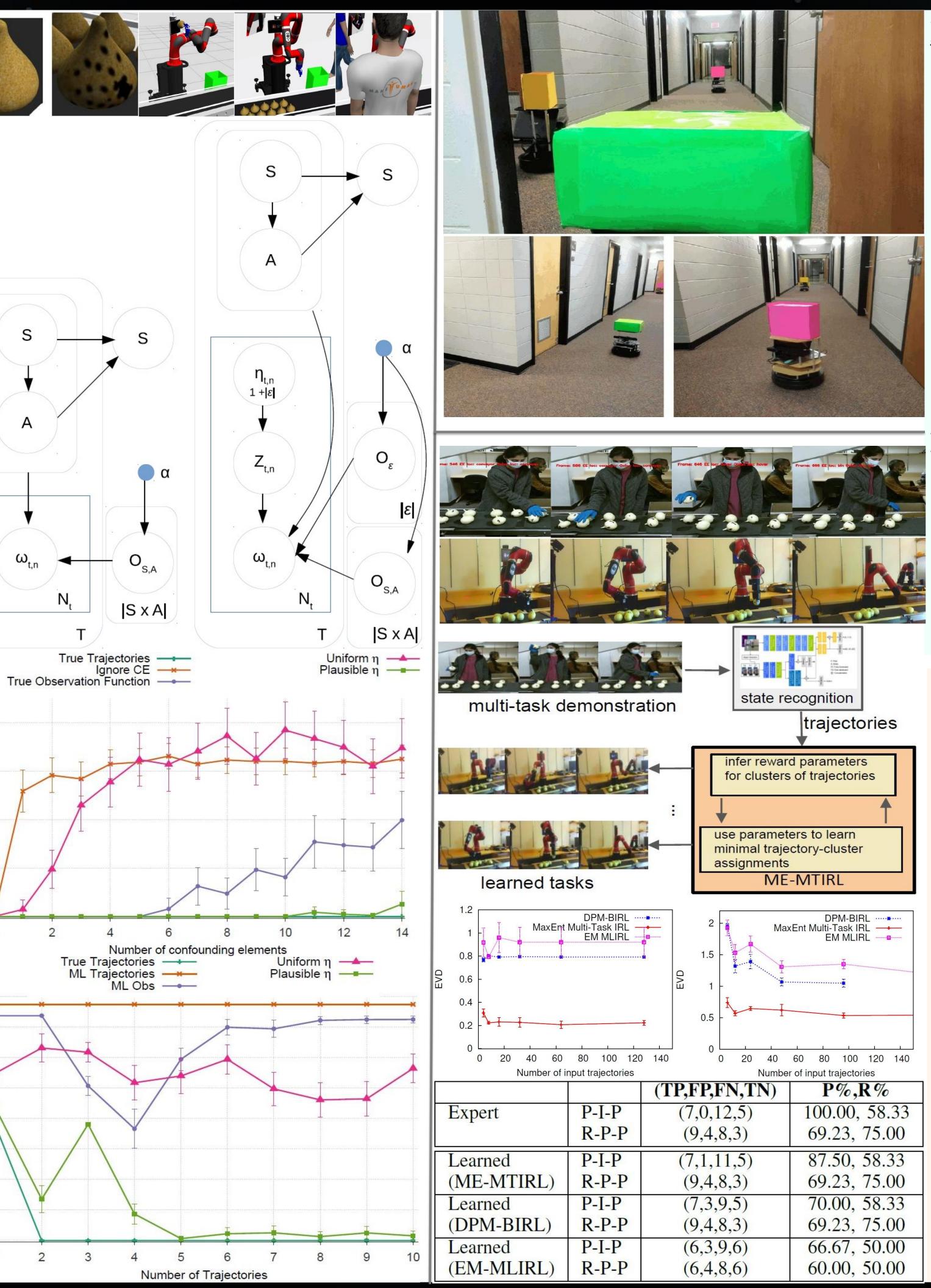
• Formative evaluation on Gridworld with added confounding elements.

Experiment 2:

- Summative assessment using Robotic Onion Sorting •
- The Sawyer robot arm is tasked with inspecting onions moving down a conveyor belt and sorting good onions from blemished ones.

2021 NRI & FRR Principal Investigators' Meeting March 10-12, 2021

Prashant Doshi (PI), Computer Science, University of Georgia Yi Hong (Co-PI), Computer Science, University of Georgia Kenneth Bogert (Co-PI), Computer Science, University of North Carolina at Asheville



	1	1	I.	1	I.	I	1
)	20	40	60	80	100	120	140
Number of input trajectories							
TN	TI,	V)		P	%,]	R%	
2,	5)		1	00.	00,	58.	.33
8,3	3)		(59.2	23,	75.0	00
1,	5)		8	87.5	50,	58.	33
8,3	3)		(59.2	23,	75.0	00
9,5	5)		1	70.0	00,	58.	33
8,3	3)		(59.2	23,	75.0	00
9,6	<u>)</u>		(66.6	57,	50.0	00
8,6	5)		(50.0)0,	50.0	00

I2RL: Online IRL Under Occlusion

- ➤ Introduce I2RL, framework for online IRL, which establishes the key components and offers candidate stopping criteria.
- Establish Key theoretical method called online latent maximum entropy IRL.
- It offers the capability to perform online IRL in contexts where portions of the observed trajectory may be occluded.

Task:

Two independent mobile robots patrolling corridors of varying configurations. A third robot observes the patrollers and uses learned reward functions to predict patrolling trajectories and identify a path to the goal location.

Experiments:

- Done using physical robots (Turtlebots) to test how well I2RL can be implemented and extended in real world.
- The learner robot can only accesses to less than 30% observability. Compared to online GAIL, LME I2RL performs significantly better and achieves a reasonable result.

Maximum Entropy Multi-Task Inverse RL

- An expert may solve a problem in multiple distinct ways each of which optimizes a different reward function while still sharing the features.
- Combine MaxEnt IRL with the Dirichlet process based minimum entropy clustering of the observed data.
- Yield a single nonlinear optimization problem called MaxEnt Multi-task IRL, which can be solved using Lagrangian relaxation and gradient descent methods.

Task:

Human experts will teach robot learner about how to distinguish blemished and unblemished onion and pick up blemished onion by its gripper.

Experiment:

- Use expected value difference averaged over the trajectories and Precision and Recall as metrics.
- Use YOLO as objects recognition tools.
- Two distinct sorting methods:
 - pick-inspect-place and roll-pick-place

