NRI:INT: Ad-hoc collaborative human-robot swarms

Award #1830471

Verifiable Robotics Research Group, Human-Robot Collaboration & Companionship Lab, and the Collective Embodied Intelligence Lab

Cornell University

NRI:INT: Ad-hoc collaborative human-robot swarms

Goal: Design the autonomy, interaction, and hardware that will enable an ad-hoc collaborative swarm of robots and non-expert humans to accomplish a high-level task without central coordination.

CornellEngineering

Verifiable Robotics Research Group

PI: Hadas Kress-Gazit

PhD Students

David Gundana

Ji Chen

CornellEngineering

Human-Robot Collaboration & Companionship Lab

Co-PI: Guy Hoffman

PhD Student

Yuhan Hu

Collective Embodied Intelligence Lab

Co-PI: Kirstin Petersen

PhD Student

Jonathan Jaramillo

NRI:INT: Ad-hoc collaborative human-robot swarms

- Hardware that is designed for interaction
- Interaction with people in different roles
- Autonomy that enables the interaction

[Jaramillo et. al. URAI '21, Hu et. al. IMWUT '20]

Event-based Signal Temporal Logic

Syntax:
$$\varphi::=\mu \mid \neg \mu \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2$$
 predicates $\alpha::=\pi \mid \neg \alpha \mid \alpha_1 \land \alpha_2$ Proposition

Propositions (uncontrolled)

$$\Psi ::= G_{[a,b]} \varphi \mid F_{[a,b]} \varphi \mid \varphi_1 \ U_{[a,b]} \varphi_2 \mid$$

$$G(\alpha \Rightarrow \Psi) \mid \Psi_1 \land \Psi_2 \mid \Psi_1 \lor \Psi_2$$

Event-based Signal Temporal Logic

[Gundana and Kress-Gazit, RA-L'21, under review]

[Gundana and Kress-Gazit, RA-L'21, under review]

User study – Simulation

Which robot behavior is most effective to evacuate people who are not completely compliant?

User study – Take 1

User study – Take 2

Passive

 $F_{[0,20]}findHuman$

 $G_{[0,300]}avoidHumans$

 $G_{[0,300]}avoidWalls$

 $G(\neg close \Rightarrow F_{[0,30]}findHuman)$

 $G(goToExit \Rightarrow F_{[0,600]}goToExit)$

CornellEngineering

Active

 $F_{[0,20]}findHuman$

 $G_{[0,300]}avoidHumans$

 $G_{[0,300]}avoidWalls$

 $G(\neg lineOfSight \Rightarrow F_{[0,60]}findHuman)$

 $F_{[0,300]}goToExit$

Next steps

- Complete and analyze simulation user study
- Design physical user study (fully autonomous robot)
- Blimp hardware and interaction
- On-the-fly specification change

NRI:INT: Ad-hoc collaborative human-robot swarms Award #1830471

Verifiable Robotics Research Group, Human-Robot Collaboration & Companionship Lab, and the Collective Embodied Intelligence Lab

Cornell University

