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In 2020-2021
● Minnesota:

– A Fast and Robust Place Recognition Approach for Stereo Visual Odometry 
Using LiDAR Descriptors (Mo, Sattar)

– Learning Rolling Shutter Correction from Real Data without Camera Motion 
Assumption (Mo, Islam, Sattar)

– Saliency-guided Visual Attention Modeling (Islam, Wang, De Langis, Sattar)

● Stevens:

– Multi-view Surface Reconstruction (Batsos, Joyce, Mordohai)

– Fast stereo 3D reconstruction (Batsos, Mordohai)



Place Recognition

Robots recognizing places which they 
have previously visited

Benefit to SLAM

● Relocalization

● Loop Closure

http://www.cvlibs.net/datasets/kitti/

http://www.cvlibs.net/datasets/kitti/


Image-based Approach

Idea

● Use an image to represent a place
● Check similarity between images
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Similarity

● Spatial layout
○ GIST[2]

● Learning-based
○ NetVLAD[3]

● Feature correlation
○ BoW[1]

http://www.cvlibs.net/datasets/kitti/

http://www.cvlibs.net/datasets/kitti/


LiDAR Approach

https://medium.com/@BabakShah/lidar-in-self-driving-cars-cee29db94af7
https://cas-assignment.readthedocs.io/en/latest/assignment.registration.html

https://ieeexplore.ieee.org/document/8593953

Idea

● Use a point cloud to represent a place
● Check similarity between point clouds

Similarity

● Point cloud alignment
○ ICP[4]

● Point cloud features
○ SHOT[5]

● Global LiDAR descriptor
○ Scan Context[6]

Maximal height in each 
bin

https://medium.com/@BabakShah/lidar-in-self-driving-cars-cee29db94af7
https://cas-assignment.readthedocs.io/en/latest/assignment.registration.html
https://ieeexplore.ieee.org/document/8593953


LiDAR Approach for Stereo VO

Motivations

● Stereo VO generates 3D points
○ absolute scale
○ not used by image similarity approaches

● 3D points can be potentially more stable than image similarity for place recognition
● Global LiDAR descriptors are computationally efficient 

Challenges

1. 3D points are distributed in a frustum
2. Not as consistent as LiDAR scans



Imitating LiDAR Scan

Requirement: the camera motion is predominantly in the forward direction to accumulate 
points



LiDAR Descriptors for Inconsistent Points

M2DP[He et al.], Scan Context[Kim et al.], 
DELIGHT[Cop et al.]

Idea: Augment these descriptors with 3D structure 
information and grayscale intensity

Modifications
● Augment the descriptors with grayscale intensity information

○ For each bin:
■ Point count
■ Average grayscale intensity

○ Binarize average grayscale intensity to highlight bright bins
● Replace gravitational alignment with PCA alignment



Experiments

Implementation

● Stereo VO: SO-DSO[Mo et al.]
● LiDAR range: 45.0m
● Point structure descriptor has twice as much weight than intensity descriptor

Evaluation

● KITTI [Geiger et al.] and RobotCar datasets[Maddern et al.]
● Accuracy metrics

○ the area under the precision-recall curve (AUC)
○ maximal recall at 100% precision



Scale Optimization
● Estimate pose and create 3D points using a monocular VO

● Project 3D points from one camera to the other camera in the stereo rig

● Find the optimal scale that minimizes the projection error

● Rescale the monocular VO



KITTI Accuracy



KITTI Plots



KITTI Efficiency



RobotCar

● Challenging for place recognition

○ Recognize place across seasons



RobotCar Accuracy



Intensity Contribution 



Use Case Analysis

Proposed approach

● Requirements
○ Stereo cameras

○ Forward motion

● High accuracy and robustness in 

visually challenging environments

● High efficiency

● Robust to repetitive textures

BoW

● Higher accuracy when there is not 

much visual appearance change



Code 

https://github.com/IRVLab/so_dso_place_recognition

Project Page

http://irvlab.cs.umn.edu/robot-localization/fast-and-robust-place-recognition-approach-stereo-visual-odometry-
using-lidar

Links

https://github.com/IRVLab/so_dso_place_recognition
http://irvlab.cs.umn.edu/robot-localization/fast-and-robust-place-recognition-approach-stereo-visual-odometry-using-lidar
http://irvlab.cs.umn.edu/robot-localization/fast-and-robust-place-recognition-approach-stereo-visual-odometry-using-lidar


Multi-View Surface 
Reconstruction



Motivation
● Unlike binocular stereo, choice of representation is crucial for Multi-view Stereo

– Volumetric

– Point clouds

– Depth map collections

– Meshes

– Implicit functions

● Depth map collections are currently the most popular

– Straightforward to adapt deep cost volume processing to plane-sweeping stereo

– Piecewise representation without global consistency guarantees



Mesh-based Representation

● Meshes are superior to volumetric and point-cloud representations 
for rendering, collision avoidance, etc. 

● Given initial noisy point cloud, apply 3D Delaunay triangulation to 
obtain tetrahedra

– Adaptive density, higher near likely surfaces

● Determine occupancy of each tetrahedron

– Watertight, globally consistent surface can be obtained as 
boundary between free and occupied tetrahedra



Overview
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Triangle Confidence Estimation
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ETH3D Low-res Many-view Dataset

• 5 training and 5 testing scenes

• Each scene contains 400-500 views

• COLMAP point-clouds contain 10s of millions of 

points

• After simplification, point clouds average around 

1 million points

• Delaunay triangulations range from 10s of 

millions to 100s of millions triangles 

• Outputs of our method average less than 1 million 

points and slightly more than 1.5 million triangles



Quantitative Results: ETH3D Test Set
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Quantitative Results: ETH3D F-1 Scores
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Qualitative Results



Qualitative Results



Conclusions

• Our method employs more powerful representation than 

current SOTA methods

• Not end-to-end
• Current graph networks limited in number of nodes
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