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Our Solution
In this research, we will adopt an AI-guided
framework to study bat's various flight maneuvers
including perching (i.e. upside-down landing), zero-
path flight, and hovering. Our AI-guided research into
copying bat flight in the context of robotics-inspired
biology will provide enormous insight into
understanding fundamentals regarding the design of

soft co-robots. Our research objective will simplify
the engineering procedure to design bio-inspired
aerial co-robots that closely mimic the flight
behavior of a target animal, therefore is directly
towards lowering the barriers for understanding
fundamentals regarding closed-loop control and
design of bio-inspired multimodal co-robots.

Soft	small	unmanned	aerial	
system	that	can	provide	
computing,	communication	
and	sensing	capabilities	in	
large-scale	systems	such	as	
residential	buildings,	streets,	
construction	zones,	state	
parks,	etc,	across	both	space	
and	time.

Bat as An Inspiration for Aerial Robots Design
In contrast with other animals that have
developed complex multi degrees of freedom
(DoF) legged, aerial or aquatic locomotion
feats, bats have an extremely articulated
musculoskeletal system that is interlocked with
their neural network and brain to execute core
communication and decision making tasks and
deliver an impressively adaptive and
multimodal locomotion behavior.

Our Vision
The various aspects of bat flight bring a unique
perspective into the research in novel aerial,
soft bio-inspired designs that are safe to
operate at the proximity of humans, extremely
agile, collision-tolerant with impressive
mobility that can reach to hard-to-access
locations in the complex physical world and
congregate for monitoring, surveillance,
energy harvesting, etc.

The	project	will	create	
programs	and	tools	to	train	
workforce	(PhD	student	and	
Postdoc)	with	new	skills	
including	bio-inspired	
robotics,	machine	learning	
and	artificial	intelligence,	and	
nonlinear	control	theory.	

The	resulting	technology	will	
significantly	improve	public	
safety	and	vehicular	dynamic	
traffic	control	in	smart	cities	
and	cost-effectiveness	
associated	with	monitoring	
environmental	disasters.
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Fig. 1. Schematic of a variational autoencoder (VAE) for background subtraction used in our DeepPBM.

3. PROPOSED DEEPPBM ESTIMATION APPROACH

Variational autoencoders (VAEs) have emerged as one of the
most popular approaches to unsupervised learning of com-
plicated distributions that underlie models or generate data
[8, 12]. VAEs are compelling since they can be set up in the
framework of deep learning (DL), and therefore benefit from
the ongoing advances in this field. In the context of DL, a
VAE consists of an encoder and a decoder. The encoder learns
an efficient representation of its input data and projects that
into a stochastic lower dimensional space, known as latent
variables. This lower dimensional representation is stochastic
in the sense that the encoder learns the parameters associated
with the underlying probability distributions of these latent
variables. The decoder, as its name suggests, tries to recover
the original data, given the probabilistic latent variables from
the encoder. The entire network is trained by comparing the
original input data with its reconstruction, which is the output
of the decoder [8]. An overview of the VAE with its building
blocks is shown in Fig. 1. We further discuss the mathemati-
cal details of each part in Section 3.1

From an information theoretic point of view, the com-
pression of the high dimensional input to a low dimensional
space as done in the encoder part of VAE (also referred to
as network bottleneck), and then decompressing it back to
the original space leads to the loss of information, which is
measured and used to learn the network. This lossy low di-
mensional representation of the input data is a desired at-
tribute that can be utilized in the context of BS in surveillance
videos. This attribute follows similar principles employed in
low-rank subspace learning approaches for unsupervised BS.
Further, it can benefit from the power and flexibility of DL
in learning a more effective low dimensional space. More-
over, using DL allows us to transfer the computational cost of
solving the subspace learning from the evaluation (which is
common in RPCA and similar methods) to the training pro-
cess of DL, which could entirely be performed offline. As
mentioned in a previous work [23], the highly redundant na-
ture of the static background in surveillance videos, suggests
that the deep network can effectively learn a very low dimen-
sional model of the background from subsequent frames, and
unavoidably discards/neglects the highly variant information
contained in moving foregrounds which are not compressible
in such low dimensionalities. Following aforementioned sig-
nificance, the main idea behind our proposed DeepPBM is us-

ing VAE built on top of a deep neural network for the purpose
of unsupervised BS considering the low dimensional repre-
sentation attribute of VAE along with the compression capac-
ity of background images.

3.1. Probabilistic Modeling of the Background in Videos

Considering that video frames f (i) 2 V , i = [1, . . . , N ],
each of size w ⇥ h pixels, are generated from d underlying
probabilistic latent variables vectorized in z 2 Rd in which
d ⌧ w ⇥ h, the vector z is interpreted as the compressed
representation of the video. A VAE considers the joint proba-
bility of the input video, V , and its representation, z, to define
the underlying generative model as p✓(V, z) = p✓(V|z)p(z),
where p(z) = N (0, I) is the standard Gaussian prior for la-
tent variables z, and p✓(V|z) is the decoder part of a VAE that
is parameterized by a DNN with parameters ✓. In the encoder
part of the VAE, the posterior distribution p(z|V) is approxi-
mated with a variational posterior q�(z|V) with parameters �.
Each dimension of the latent space in this variational posterior
is modeled independently with a Gaussian mean and variance
for each video frame, as q�(z|f) =
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where µf , and �f 2 are outputs of the encoder, q�(z|f), which
is also parameterized by a DNN with parameters �. The ef-
forts in making this variational posterior as close as possible
to the true posterior distribution results in maximization of the
evidence lower bound (ELBO) [4,12], such that the final VAE
objective for the entire video becomes:

ELBOV(✓,�) = (1)
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The first term in Eq. (1) (expected likelihood term) can be in-
terpreted as the negative reconstruction error, which encour-
ages the decoder to learn to reconstruct the original input,
and the second term is the Kullback-Leibler (KL) divergence
between prior and variational posterior distribution of latent
variables, which acts a regularizer to penalize the model com-
plexity.

For our purpose of BS, we used an l1-norm loss function
for reconstruction error of the VAE in order to capture the
sparsity of the foreground assumed in the majority of low rank
subspace factorization studies used in background/foreground
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