
Situating Robots in the Emergency Department [6,7]
Problem: The ED is an uncertain environment in which mistakes can be deadly and providers are over
burdened.; well-designed & contextualized robots could relieve providers of non-value added tasks and
enable them to spend more time on patient care. e.g., delivery robots.

Approach: We used domain knowledge to characterize staff workflow and patient experience, identify key
considerations for robots in the ED, inc.: safety, physical and behavioural attributes, usability, and training.
We introduced a task representation [5] and new acuity-aware social navigation algorithm [7] which
incorporates both patient criticality and staff workflow.

Results: We introduced the Safety-Critical Deep Q-Network (SafeDQN) system [7], a new acuity-aware
navigation system for mobile robots. SafeDQN is based on two insights about care in EDs: high-acuity
patients tend to have more HCWs in attendance and those HCWs tend to move more quickly. We compared
SafeDQN to three classic navigation methods, and show that it generates the safest, quickest path for mobile
robots when navigating in a simulated ED environment.

Coordinating Human-Robot Teams in Uncertain Environments
Christopher Amato, Northeastern University & Laurel D. Riek, UC San Diego

Project overview
Goal: create and solve realistic

models for coordinating teams of
humans and robots in uncertain
environments

1. Re-conceptualize multi-human teamwork
that include dynamic, stochastic
environments

• See Intention Modelling for Teaming
under Uncertainty [4][5]

2. Develop realistic (POMDP) models of
human-robot teamwork with uncertainty and
partial observability

• In progress

3. Create scalable techniques for planning and
learning in these models

• See Bayesian Reinforcement
Learning (RL) for POMDPs [2] and
Belief-Grounded Networks for
Accelerated Robot Learning under
Partial Observability [3]

4. Test in simulation and emergency
department (ED) settings

• See Situating Robots in the
Emergency Department [6][7]

Bayesian Reinforcement Learning (RL) for POMDPs
Developed scalable deep Bayesian RL methods for POMDPs [2]
• Bayesian RL can optimally balance exploration and exploitation

• Ideal for online learning—optimally sample efficient!

• Can be computationally challenging, but combined with deep reinforcement learning to improve scalability

• These methods outperform previous methods, allowing learning in large POMDPs

[1] Bayesian Reinforcement Learning in Factored POMDPs. Sammie Katt, Frans A. Oliehoek and Christopher Amato. In the Proceedings of the Eighteenth International Conference on Autonomous Agents and Multi-Agent System (AAMAS-19), May 2019
[2] BADDr: Bayes-adaptive Deep Dropout RL for POMDPs.. Sammie Katt, Frans A. Oliehoek and Christopher Amato. In review
[3] Belief-Grounded Networks for Accelerated Robot Learning under Partial Observability. Hai Nguyen, Brett Daley, Xinchao Song, Christopher Amato and Robert Platt. In the Proceedings of the Conference on Robot Learning (CoRL-20), November 2020.
[4] Frank, A., Kubota, A., and Riek, L.D. (2019). "Wearable activity recognition for robust human-robot teaming in safety-critical environments via hybrid neural networks". Andrea Frank, Alyssa Kubota, Laurel D. Riek. IEEE International Conference Intelligent Robots and Systems (IROS-19), 2019
[5] Activity recognition in manufacturing: The roles of motion capture and sEMG+inertial wearables in detecting fine vs. gross motion. Alyssa Kubota, Tariq Iqbal, Julie A. Shah, and Laurel D. Riek. IEEE International Conference on Robotics and Automation (ICRA-19), 2019.
[6] Situating Robots in the Emergency Department. Angelique Taylor, Sachiko Matsumoto, and Laurel D. Riek. AAAI Spring Symposium on Applied AI in Healthcare: Safety, Community, and the Environment (AAAI-20) , 2020
[7] Social Navigation for Mobile Robots in the Emergency Department. Angelique Taylor, Sachiko Matsumoto, Wesley Xiao, and Laurel D. Riek. IEEE International Conference on Robotics and Automatino (ICRA-21), 2021

POMDPs

Bayesian RL for POMDPs (e.g., [Ross et al. JMLR 11])
• Explicitly consider uncertainty over possible trans. and obs. models
• Can start with prior over models and update based on observations
• Can now have belief over state and models

Scalable solution methods
• Combined scalability of deep RL with sample efficiency of Bayesian RL [2]
• Sampling method for scalable particle filtering and planning [2]
Results
• Can learn similar to tabular methods [1] on small problems
• Can now solve significantly larger problems

• S, a set of states
• A, a set of actions
• T, the state transition model:
• R, the reward model:
• O, a set of observations
• Z, the observation model:

Intention Modelling for Teaming under Uncertainty
Created new deep learning methods for non-visual activity modelling [4]
• Can detect both fine and gross motor movements, is immune to occlusion and avoids privacy concerns of

visual sensing, augments linear and angular velocity w/ muscle activity data from wearable (Myo)

• Our methods outperformed the state-of-the-art classifiers by 28%, sEMG+Inertial yielded significantly
higher classification accuracy than inertial alone

• Wearables are well-suited to activity recognition in uncertain environments

Designed new approaches for multimodal contextualized activity recognition [5]
• Created new multimodal dataset of gross and fine motor tasks (EMG/Inertial/MoCap), compared multiple

activity recognition approaches for recognition suitability, employed early fusion

• Results suggest complementary strengths of each sensor type – task type should be taken into account
when engaging in sensor selection

Belief-Grounded Networks for Accelerated Robot Learning
under Partial Observability [3]

Problem
• Many tasks can be simulated and have privileged information (true states, models) during training
• However, when being deployed the agent only has partial observability
• How to leverage this privileged information during training?

Method
• Use ground-truth beliefs to improve the history feature

extractors --> better features --> better action selection
• Applied to an advantage actor-critic (A2C) agent
• During training, add two branches (blue) to a standard

A2C agent to reconstruct the beliefs from the history
• During deployment, only the actor network is used

Results
• The proposed method (brown line, +BGN) outperforms

all baselines (even the one using ground-truth beliefs)
• Policies learned in simulation can be transferred

zero-shot to work w/ real hardware

Small problem/similar performance

Big problem/previous methods can’t solve

Figure 3: Our three force-feedback robotic domains. The agent controls a finger with an adjustable
stiffness to first localize and then manipulate an object of interest.

Figure 4: The average success rates of all methods in three robotic tasks.

TwoBumps-1D (Figure 3, middle). Two movable bumps rest on a table, with the robot’s finger
moving along a horizontal line above them. The initial position of the robotic finger as well as the
two objects are randomized uniformly such that the left-right order between the bumps is unchanged.
The agent’s goal is to push the rightmost bump to the right without disturbing the left bump. There
are four action combinations: move left or right, each with a compliant or stiff finger. This task
is challenging because the agent does not know initially which bump is rightmost—it must touch
both bumps to determine this. Because the agent’s motion is constrained one-dimensionally, it is not
possible to miss the bumps. The robot must relax the stiffness of its finger when passing by a bump
to avoid pushing the wrong one. The episode ends as soon as either bump moves.

TwoBumps-2D (Figure 3, right). Two bumps of different sizes are randomly positioned on a 4⇥ 4
grid. The robotic finger is constrained to move in a plane above the bumps. The finger can be moved
in any of the four directions or perform a grasp. The agent must make contact with each bump at
least once and then grasp the larger bump to complete this task successfully, inferring the bumps’
relative sizes from the angular displacement of the finger. The episode ends after a grasp is executed.

Results We plot the success rates (100-episode moving average) of the methods averaged over
10 random seeds with standard deviations shaded in Figure 4. We did not test SARSOP for these
domains because the best attainable performance is trivially 1 by definition. Ah-Ch + BGN is the
only agent that can achieve a perfect success rate in all tasks. Ab-Cb does significantly worse in a
surprising contrast to its classic POMDP performance; we provide an analysis for this later in Sec-
tion 5.4. Nevertheless, Ab-Cb still performs better than Ah-Cs, Ah-Cb, and Ah-Ch which all have
roughly the same bad performance. These methods appear to be unable to learn meaningful control
policies for these tasks, especially in TopPlate and TwoBumps-2D, and their learning progress is
highly unstable compared to Ah-Ch + BGN and Ab-Cb.

5.3 Robot Evaluation

We transfer the trained Ah-Ch + BGN policies from the previous section to a real robot. We use
a 2-DoF gripper [35] mounted on a UR5e robot arm (Figure 3), where an impedance controller
modulates the compliance of the finger. Without any fine tuning, all policies have a 100% success
rate on the three tasks. We describe the behavior of each policy below.

TopPlate (Figure 5, left). There are two cases. 1� The number of plates k satisfies k < 10, the
finger (yellow circle) goes upward until no plate is felt then it moves down one step to grasp the top

6

Fig. 1: SafeDQN System Architecture. SafeDQN performs acuity detection using Eq. 2. Then, it assigns an acuity score
(AS) to each observed patient in the ED and uses the AS to assign a reward to the agent. The state-action value transitions
for the agent exploration are modeled by a neural network, which predicts optimal Q-values.

resource conflicts [17], and find paths that favor areas with
high bandwidth or other resources [18]. Robots can also learn
to avoid areas that might distract people from working, such
as by imitating typical human paths using Hidden Markov
Models (HMMs) [19] or by learning to avoid areas that afford
working [20]. In contrast to prior work, we investigate social
navigation in safety critical settings, where understanding the
situational context can potentially save lives [21].

B. Navigation and Reinforcement Learning
Reinforcement learning (RL) is frequently used in plan-

ning. RL typically models an agent as a Markov Decision
Process (MDP) which interacts with an environment E
through sequential states st. The goal of the agent is to
generate a policy ⇡ which maps states to actions, such
that the agent maximizes its cumulative reward. This pro-
cess obeys Bellman’s equation, which generates the optimal
action-value function. At each timestep, the agent takes an
action A = 1, . . . ,K and is given a reward rt where the
cumulative reward for all timesteps is Rt =

P1
t=0 �

trt where
t is the timestep where the agent’s interaction with E ends.
� is the discount factor, which corresponds to a priority on
future rewards given to the agent. For example, a high �
corresponds to a priority on future rewards and prioritizes
immediate rewards. The agent’s actions are chosen using Q-
values to estimate the optimal action the agent should take
to receive the highest cumulative reward.

In our work, we use a model-free approach, as it is
challenging to model the ED, due to its frequently changing
nature, sensor occlusion, noise, and the inability to mount
sensors due to privacy concerns [21]. There are many model-
free approaches in the literature, such as actor-critic and
policy search methods, which search directly over a policy
space to maximize the reward [22]. Another model-free
method which has been extensively studied is Q-learning,
a temporal difference learning algorithm that learns the
action-value function to choose the optimal action at each

timestep [23], [24]. We employ Q-learning, as it is well-
suited for learning through exploration. It can efficiently
learn in discrete action spaces, and has a useful exploration
property which is beneficial for planning.

Mnih et al. [25] proposed a deep Q-network (DQN)
to learn a policy for Atari 2600 games, which surpassed
human performance. The authors entered the raw pixels
from the game screen into convolutional neural networks
(CNNs), which outputted a state-action value. This approach
is beneficial because it uses an experience replay buffer to
store the agent’s experiences et = (st, a, rt, st+1) in replay
memory M = (e1, . . . , et) [26]. Also, it maintains a learning
network Q(s, a; ✓) with updated parameters, and a target
Bellman network with the original parameters ✓�.

Li(✓i) E[(r + �max
a0

Q(s0, a0; ✓�i)�Q(s, a; ✓i))
2] (1)

DQN networks are trained using samples from mini-
batches in M and the parameters are updated using an opti-
mizer such as stochastic gradient descent (SGD) or RMSProp
[25], [27]. The agent’s behavior is based on ✏-greedy policy
which employs a random strategy at probability ✏ and a
greedy strategy with probability 1-✏. Many improvements
have been proposed to improve DQN, such as Double Q-
Learning [23] and Dueling Q-Networks [28].

III. SAFETY-CRITICAL DEEP Q-NETWORK (SAFEDQN)

We designed SafeDQN drawing on inspiration both from
the Emergency Medicine literature as well as by engaging
in several years of co-design work with ED staff, to help
us understand the ED’s operational context [8], [2]. For
instance, ED HCWs explained that high-acuity patients typ-
ically require more HCWs to attend to them, and that they
sometimes treat patients in the hallways when rooms are full.
Fig. 1 and Algorithm 1 present an overview of SafeDQN.

When designing SafeDQN, we made several assumptions.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 2610 submitted to 2021 IEEE International Conference
on Robotics and Automation (ICRA). Received October 31, 2020.

Map 1 Map 2
Avg. Path
Length #

Avg.
Reward "

Avg. HA
Penalties #

Avg. LA
Penalties #

Avg. Path
Length #

Avg.
Reward "

Avg. HA
Penalties #

Avg. LA
Penalties #Method OF KD OF KD OF KD OF KD OF KD OF KD OF KD OF KD

Random Walk 243.6 231.0 -54.8 -53.3 5.9 5.6 15.4 25.0 231.6 240.6 -49.9 -54.5 3.1 10.9 11.3 11.3
A* 12.6 11.7 -2.4 -2.5 0.1 0.2 0.4 0.9 11.2 11.9 -2.1 -2.3 0 0 0.3 0.1
Dijkstra 11.6 10.4 -2.4 -2.1 0.1 0.3 0.2 0.4 12.0 12.0 -2.6 -2.4 0.1 0 0.2 0.4
SafeDQN 11.3 9.4 -0.6 -0.6 0 0.1 0.7 0.7 17.2 10.6 -1.7 -0.5 0.1 0 0.6 0.4

Map 3 Map 4

Method Avg. Path
Length #

Avg.
Reward "

Avg. HA
Penalties #

Avg. LA
Penalties #

Avg. Path
Length #

Avg.
Reward "

Avg. HA
Penalties #

Avg. LA
Penalties #

OF KD OF KD OF KD OF KD OF KD OF KD OF KD OF KD
Random Walk 247.9 215.9 -54.2 -46.6 6.7 2.1 4.6 7.8 225.6 215.8 -50.3 -48.7 4.7 10.4 13.1 6.0
A* 10.9 11.7 -2.1 -2.3 0 0.1 0.1 0 11.6 10.7 -2.4 -2.4 0.1 1.0 1.1 0.2
Dijkstra 10.2 11.4 -2.1 -2.3 0 0.1 0.1 0 11.6 12.3 -2.3 -2.7 0.1 1.5 0.5 0.1
SafeDQN-SGD 10.1 10.6 -0.5 -0.6 0 0 0.1 1.0 10.5 11.5 -0.6 -0.8 0 0.3 1.1 1.4

TABLE I: Comparison between SafeDQN variants and Random Walk, A* search [36], and Dijkstra’s [37] shortest path
methods over 100 iterations where " means higher is better and # means lower is better. We compare the optical flow (OP)
[32] and keypoint detection (KD) [33] methods which we used to determine the number of low and high acuity patients for
each map. We ran all methods on four maps which have single and double block hallways (See Fig. 2).

method (optical flow or keypoint detector), and map (1-4)
(See Table I).

Mauchly’s test indicated that the assumption of sphericity
had been violated for all main effects except for HAPs
for map (p > .05) �2(2) = 10.3, PL for map (p > .05)
�2(2) = 8.6, and PL for map*motion (p > .05) �2(2) =
1.4. As a result, we correct the degrees of freedom using
Greenhouse–Geisser estimates of sphericity (✏ = .96 for
HAP for the main effect of map, ✏ = .97 for PL for the
main effect of map, ✏ = 1.0 for PL for the main effect
of map*motion) with Bonferroni adjustment. All effects are
reported as significant at p < .05. Table I and Fig. 4
summarizes the results of the experiments, further described
below.

1) Navigation Method: There was a significant main effect
of the navigation method on HAP, F(1.15, 114.12) =605.17,
p < 0.001, r = 0.859. Contrasts between navigation methods
revealed that for HAP, SafeDQN performed significantly
better than Random Walk, F(1,99) = 688.475, p < 0.001,
r = 0.874; A*, F(1,99) = 9.032, p < 0.005, r = 0.084; and
Dijkstra, F(1,99) = 15.954, p < 0.001, r = 0.139.

There was also a significant main effect of the navigation
method on PL, F(1.0, 99.65) =2,697.030, p < 0.001, r =
0.965. Contrasts between navigation methods revealed that
SafeDQN performed significantly better than Random Walk,
F(1,99) = 2,739.96, p < 0.001, r = 0.965, A*, F(1,99) =
90.44, p < 0.001, r = 0.477, and Dijkstra, F(1,99) = 104.67,
p < 0.001, r = 0.514.

2) Motion Estimation Method: There was a significant
main effect of the motion estimation method on HAP, F(1,
99) = 42.15, p < 0.001, r = 0.299, but not for PL, F(1,
99) = 1.13, p > 0.05, r = 0.011. Contrasts revealed that for
HAP, OF, F(1,99) = 42.15, p < 0.001, r = 0.299, performed
better than KD.

3) Map: There was a significant main effect of the map
on HAP, F(3, 276) = 16.45, p < 0.001, r = 0.142, but not
for PL, F(3, 282) = 0.70, p > 0.05, r = 0.007. Contrasts
revealed that for HAP, Map 1, F(1,99) = 17.60, p < 0.001,
r = 0.151; Map 2, F(1,99) = 6.74, p < 0.05, r = 0.064; and
Map 3, F(1,99) = 44.93, p < 0.001, r = 0.312, performed

better than Map 4.
4) Navigation Method * Motion Estimation Method: There

was a significant interaction between the navigation method
and map in HAP, F(1, 116) = 17.98, p < .001, r = .154
and insignificant for PL, F(1, 100) = 2.3, p > .05, r =
.022 (See Fig. 4). Contrasts were performed to compare all
navigation methods to SafeDQN and all motion estimation
methods which revealed SafeDQN performed significantly
better than A* for HAP (F(1, 99) = 6.5, r = .062, p < .05)
and Dijkstra for HAP (F(1, 99) = 12.9, r = .115, p < .05) for
OF and KD. Contrasts also revealed that SafeDQN achieves
a significantly lower PL than A* (F(1, 99) = 23.3, r = .190,
p < .001) and Dijkstra (F(1, 99) = 20.0, r = .168, p < .001)
for OF and KD.

5) Navigation Method * Map: There was a significant
interaction between the navigation method and map for HAP,
F(3, 320) = 7.7, r < .072, p < .001 and a insignificant
interaction for PL F(2, 285) = 1.1, p > .05 r < .011.
Contrasts were performed to compare all navigation methods
to SafeDQN and all maps and showed a significant difference
in all interactions except HAP for Random Walk compared
to SafeDQN for Map 2 compared to Map 4 F(1, 99) = .35,
r = .004, p > .05, PL for Random Walk compared to
SafeDQN for Map 1 compared to Map 4 F(1, 99) = 6.5,
r = .062, p > .05, and Map 2 compared to Map 4 F(1, 99)
= .35, r = .004, p > .05, and Map 3 compared to Map 4
F(1, 99) = .876, r = .009, p > .05 Additional insignificant
interactions include PL for A* compared to SafeDQN for
Map 3 compared to Map 4 F(1, 99) = 1.2, r = .013, p > .05,
PL for Dijkstra compared to SafeDQN for Map 1 compared
to Map 4 F(1, 99) = .82, r = .008, p > .05, and PL for
Dijkstra compared to SafeDQN for Map 3 compared to Map
4 F(1, 99) = .61, r = .006, p > .05.

6) Navigation Method * Motion Estimation Method *
Map: There was a significant three-way interaction for HAP
F(3,314) = 38.2, p < .001, r = .279 and a insignificant
interaction for PL, F(2, 290) = 38.2, p > .05, r = .011.
This indicates navigation method and motion estimation had
different effects on HAP and PL depending on the map being

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 2610 submitted to 2021 IEEE International Conference
on Robotics and Automation (ICRA). Received October 31, 2020.

