NRI: FND: COLLAB: Design of Dynamic Multibehavioral Robots

New tools to consider design tradeoff and enable more capable robotic systems

Pls: Prof. Aaron M. Johnson, Carnegie Mellon University Prof. Sam Burden, University of Washington

Award #: 1924723, 1924303

Dates: Sep 2019 – Aug 2023

Challenge: How do we design a robot that is good at multiple behaviors? For example, how do we design one robot for both locomotion and manipulation?

Scientific Impact: The analytical and computational techniques we create will contribute toward establishing a systematic paradigm for robot design.

Most mobile manipulation systems are built by combining independent manipulation and locomotion system.

Overall Solution: Formulate dynamic behaviors as objective functions, solve multi-objective optimization problem involving design parameters, e.g. spring stiffness and geometry.

Key Components:

- 1) Lift reduced-order models to a common design tradespace, then use Pareto optimization to navigate that tradespace.
- 2) Decompose NLP optimization problem into sequence of QCQP subproblems for efficiency

Multi-behavior optimization: Optimized multitemplate design requires less effort for both locomotion and manipulation and Paretodominates nominal design for both behaviors.

Decomposed Optimization: Break apart full NLP into three subproblems then solve iteratively:

- 1) Design parameters (e.g. link lengths)
- 2) Configuration parameters (e.g. joint angles)
- 3) Dynamic consistency (e.g. contact forces) Each can be a QCQP, as kinematics are quadratic in either design OR (transformed) configuration. Result is twice as fast as full problem.

Broader Impact: Design for multibehaviorality will help produce e.g. home assistance robots that must move and interact in human environments.

Education: Tools and examples from this project were incorporated into multiple classes. Tutorial article to be submitted soon.

REU: Undergraduate project to build legs that are good at both running and climbing by optimizing material properties and dimensions.

small legged robots.

Outreach: Hosted afterschool program for middle schoolers teaching CAD (virtually in pandemic) and building

