NRI: FND: COLLAB: Distributed Bayesian, Learning and Safe Control for

Autonomous Wildfire Detection

Nikolay Atanasov¹ : Sicun Gao² Tajana Rosing²

Baris Aksanli³

¹ECE, ²CSE, UCSD

³ECE, SDSU

Challenge

Real-time environmental monitoring using an unmanned aerial vehicle (UAV) team

Solution

- Task A: Online multi-modal terrain mapping
- Task B: Communication- and uncertainty-aware UAV trajectory planning
- **Task C**: Nonlinear control with safety and stability guarantees

Scientific Impacts

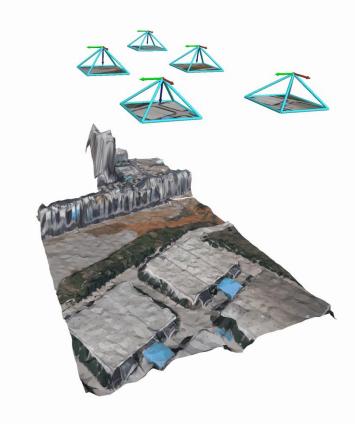
- Develop fundamental robot autonomy capabilities that generalize to other areas of CPS research
- Online terrain mapping, UAV coordination, learning Lyapunov/barrier certificates for safe UAV control

Broader Impacts

- Improve situational awareness for first responders
- Real-time data for weather and fire spread simulators
- UCSD-SDSU collaboration to increase undergraduate participation in robotics research

NRI: FND: COLLAB: Distributed Bayesian, Learning and Safe Control for Autonomous Wildfire Detection

Nikolay Atanasov¹ : Sicun Gao² Tajana Rosing²


Baris Aksanli³

¹ECE, ²CSE, UCSD

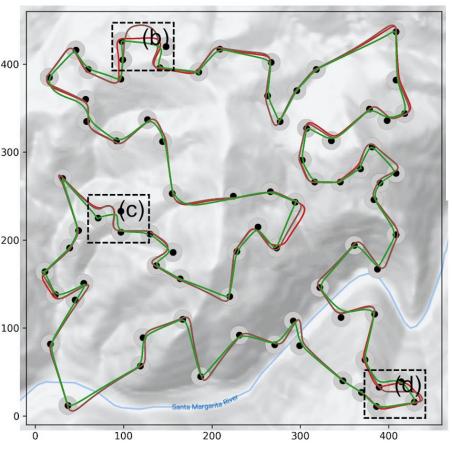
³ECE, SDSU

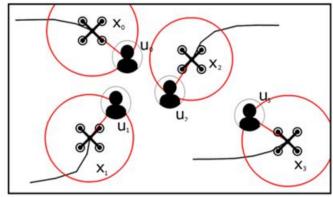
• Task A: Online multi-modal terrain mapping

- Input: aerial RGB images and tracked visual keypoints
- Output: real-time mesh map of the 3-D terrain and semantic categories
- **Approach:** Graph convolution neural network predicts mesh vertex offsets to minimize 3-D mesh and 2-D depth errors

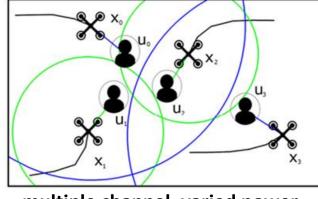
NRI: FND: COLLAB: Distributed Bayesian, Learning and Safe Control for

Autonomous Wildfire Detection


Nikolay Atanasov¹ : Sicun Gao² Tajana Rosing²


Baris Aksanli³

¹ECE, ²CSE, UCSD


³ECE, SDSU

Task B: Communication- and uncertainty-aware UAV trajectory planning

single channel, uniform power

multiple channel, varied power

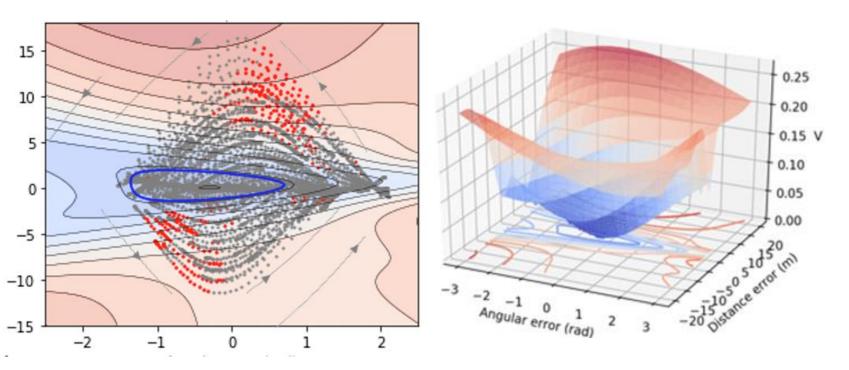
Uncertainty-aware Planning

- Minimize max uncertainty for estimating points of interest
- Generate continuous min-jerk dynamically feasible trajectories
- Bi-level optimization of number of observations and B-spline trajectory

Communication-aware Planning

- Max network capacity for multiple UAVs assigned to human users
- Joint alternating optimization of trajectories, RF channel, RF power

NRI: FND: COLLAB: Distributed Bayesian, Learning and Safe Control for Autonomous Wildfire Detection


Nikolay Atanasoy¹ :: Sicun Gao² Tajana Rosing²

Baris Aksanli³

¹ECE, ²CSE, UCSD

³ECE, SDSU

• Task C: Nonlinear control with joint stability and safety guarantees

- Learn Lyapunov/Barrier functions with unknown system dynamics
- Sampling-based certification
- **Critic**: aims to obtain a neural Lyapunov function
- **Actor**: aims to minimize the Lie derivative