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Significant Contributions To Date Broader Impacts
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* Has a higher success rate and - 2x1 . equitably assign ,
. con o * Leadsto 1.5-2.5 orders of magmtude faster tasks using power Education and Outreach
generalizes better to new crowc N convergence than Consensus ADMM f o
sizes and environments than either DWA or (depeniling on graph topology) JChdIangr[.)am o * Student mentorship in lab at UG,
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onboard monocular camera s " * Create distributed Thompson sampling | N 5 y Y
 Uses deep learning front-end to detect and track S algorithm to solve MAB | etc.
objects and UKF back-end to track 6 DoF pose 00 0T ot e o , ,  Lovde sttt (baceline * Inclusion in courses at Temple and
, o * Propose distributed goal swapping algorithm
* Run 3 times faster than the fastest existing method, — wsarion to decrease total motion of team Stanford
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