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INTRODUCTION

e Frictional contact is the fundamental
behavior of robot locomotion and
manipulation.

However, in uncertain environments,
robots move slowly and cautiously,
often avoiding, rather than embracing,
contact.

LEARNING DISCONTINUITY [3]

CONTACT-AWARE CONTROL SYNTHESIS [5,6,7]

e Standard ML approaches to model learning, which bias toward
continuity and simplicity, are fundamentally at odds with contact
dynamics.

e Fven for simple examples, like a bouncing ball, while our intuitive
understanding of the motion is simple, the mapping z;, — x,, is
discontinuous at impact events.

e Smoothing used in physics simulators artificially simplifies the
problem, where empirical results show a direct correlation between
stiffness (hard being more realistic) and learning error.

e The challenge in contact-rich manipulation lies in the discontinuous
dynamics, due to frictional forces and impacts.

e \We design provably stable control policies that leverage tactile
feedback.

e Modeling dynamics as a Linear Complementarity System (LCS)

x = Ax + Bu + CA,
0< ALl Dzx>0.

e Mirror this structure in the controller and Lyapunov function
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Controllers and certificates utilize tactile feedback, are
piecewise-differentiable, but are non-combinatoric and scalable.

e Synthesis of a stabilizing controller solved as a bilinear matrix
inequality.

e This project aims to to enable robots
to intelligently make and break
contact while manipulating complex
and uncertain objects.
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QUASISTATIC MODELING [1]

Prior, quasistatic approaches are
fundamentally unable to cap-
ture grasping and jamming. We
have developed a comprehen-

sive model for quasistatic ma- ' '

nipulation. By replacing pure ve-

EXAMPLE: CART-POLE WITHSOFT WALLS

e Two stiff spring-based walls
that interact with the pole
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