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Physics-based Modeling and Control

Quasi-static modeling
= Integrate understanding of underlying velocity control to quasi-static models

= Created unified quasi-static model for pushing, grasping, and jamming.

Set-valued multi-contact simulation
= Rigid bodies lead to non-uniqueness, but simulators bias toward a single

solution
= Linear complementarity problem to capture set of potential solutions

Contact-aware control
= Rather than try to identify and react to contact events, a simple, direct path

from measured forces A to control u(x, \)
Linear complementarity framework can also verify ReLU neural networks

Halm and Posa. A Quasi-static model and simulation approach for pushing, grasping, and jamming. WAFR, 2018.
Halm and Posa. Modeling and analysis of non-unique behaviors in multiple frictional impacts. RSS, 2019.

Aydinoglu, Preciado, and Posa. Contact-Aware Controller Design for Complementarity Systems. ICRA, 2020.
Aydinoglu, Fazlyab, Morari, and Posa. Stability Analysis of Complementarity Systems with Neural Network Controllers. HSCC, 2021.



Physics-inspired learning

Deep neural networks are biased to find the

simplest function f which explains the motion.

' = fo(x)

ContactNets: physics-inspired representation Training
and learning of discontinuous dynamics (@,u,2')—
« Implicit representation of discontinuities
« Well-conditioned training process
e Trained without tactile sensing or mode
estimation ;
Net Contact Force via |
> Inverse Dynamics Fﬂ
. Neural Network
. Numerical Optimization
D Analytic Expression

Pfrommmer, Halm, and Posa. ContactNets: Learning of Discontinuous Contact Dynamics with Smooth, Implicit Representations. CORL, 2020.
Parmar, Halm and Posa. Fundamental Challenges in Deep Learning for Stiff Contact Dynamics. Under review.



Physics-inspired learning
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Trained on single-step prediction, accurate long term predictions from minimal data.

Pfrommmer, Halm, and Posa. ContactNets: Learning of Discontinuous Contact Dynamics with Smooth, Implicit Representations. CORL, 2020.
Parmar, Halm and Posa. Fundamental Challenges in Deep Learning for Stiff Contact Dynamics. Under review.
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