NRI: FND: Controllable Compliance: A New Robotic Arm for Contact-Rich Manipulation

Peter Whitney and Robert Platt, Northeastern University PI meeting video presentation: <u>https://youtu.be/aJbnspOcWgs</u> BGN: <u>https://sites.google.com/view/bgn-pomdp/home</u>

Challenges:

- Building a lightweight arm capable of active high-bandwidth impedance control is hard
- Controlling contact-rich interactions in uncertain environments is hard

Aims

- Developing a lightweight, low-impedence 7-DOF robot manipulator for research and mass production
- Employ *remote direct drive* (RDD) actuation concept
- Developing process for learning optimal controllers rather than tuning controllers for specific hardware

hydrostatic actuators

Low-friction hydrostatic transmission

2-DOF gripper, driven by remote directdrive brushless motors

Force-aware manipulation using Belief Grounded Networks (BGNs)

TopPlate

Bumps-1D

Bumps-2D

Manipulation tasks trained on force-feedback from low-impedance fingers

Under devel. 7-DOF arm, fully remotely actuated

Brushless motor direct-drive and 3:1 coupling to hydraulic transmission rotary actuators

BGN combined with A2C. The belief state is reconstructed from partial observations during training. The resulting policy is history, not belief based, so we forego calculating belief state during runtime.

Goal: Efficiently fuse multiple heterogenous data modalities into a single joint representation for use in policy learning for contact-rich manipulation

Aims:

- Expand Equivariant SAC to SO(2) symmetries
- directly on physical robot

Ongoing Work:

Equivariant Multimodal Fusion - EMF

exploit the joint visual-force Quantify the effectiveness of different data modalities in contact-rich manipulation Learn manipulation policies

EMF combines visual, force, and proprioceptive data using domain-specific equivariant encoders

Sensor Modality Ablation

Reduced Visual Acuity

• Online training via teleop demonstrations, leveraging SO(2) Equivariant SAC Extend to use the operator-controlled contact impedance in online training