
(a) Percutaneous Needle Insertion (b) Chest Tube Placement (c) Open Suturing

Figure 12: Evaluation of Surgical Training for Basic Trauma Procedures. Simulated models will be used to
evaluate the effectiveness of co-robot assisted training for (a) percutaneous needle insertion, (b) chest tube
placement, and (c) open suturing.

across a range of expertise levels including novices (UTD and UTSW students, IRB approved),
junior surgical residents (PGY 2-3), senior residents (PGY 4+) and fellows, and robotic surgery
experts (5 per group), to participate in a 2-part user study. First, subjects will perform a baseline
proficiency-level experiment for each of the three trauma tasks (i.e., needle insertion, chest tube
placement, and suturing) while wearing the co-robot but without guidance to collect kinematic and
kinetic data. Basic verbal instructions and an expert demonstration of the task will be provided
to all subjects. Video will also be recorded to allow for expert evaluation of performance using
the metrics and checklists from Task 3.1. Subjects will then perform each task in a randomized
order with three repetitions per task, while receiving standardized mentor feedback. To ensure
consistency, Co-I Park or the research fellow will be the mentor for all experiments. Scores, evalua-
tions recruited from senior faculty, video, as well as kinematic and kinetic metrics will be collected
for each subject. Post-experimental surveys will also be administered to determine how useful the
guidance system was at completing the various tasks. These data will be used to identify the ef-
ficacy of the haptic co-robotic system for improving intraoperative performance. Additionally, we
will study the effect of expertise level on learning outcomes for the different groups. We anticipate
that haptic feedback will most significantly improve learning for novices and intermediates. Data
for expert-to-expert guidance will be particularly interesting to study as issues of teamwork and
trust may be affected by the presence of the teleoperated robot.

Task 3.3: Evaluation of Long-Term Skill Retention It has been shown that performance
in surgical skills does not necessarily translate to long-term mastery or even proficiency of those
skills. In the final objective of the project, we will validate the usefulness of our haptic co-robot
for surgical proficiency and outcomes through a longitudinal training study. Twenty non-medical
novice subjects, with no prior formalized medical training or opportunities to learn skills outside of
our study, will be recruited to participate in 6 month training study. Subjects will be randomized
into a control group, receiving only verbal training guidance, and a co-robot feedback group that
will additionally receive haptic guidance from the mentor. The overall time of this study was chosen
to reflect current training practices at UTSW. To ensure results are not skewed by the co-robot
hardware, the control subjects will also wear the system, which will only be used to record kinematic
and kinetic data. Prior to the study, all subjects will be asked to perform each of the three basic
training tasks after verbal instruction and without additional guidance. Baseline performance and
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Fig. 6: Accuracy for each condition

Fig. 7: Overall accuracy boxplot

correction) revealed statistically significant differences in
accuracy between the following pairs: C1 and C4 (p =
0.024), C1 and C5 (p = 0.024), C3 and C4 (p = 0.04),
and C3 and C5 (p = 0.024). Significance at the 10% level
was obtained for Holm-corrected p-values for pairs C1 and
C2 (p = 0.073), and C2 and C3 (p = 0.073).

Figure 8 shows boxplots for the overall NASA-TLX
workload. Median values were 8.1, 7.6, 6.7, 10.5 and 10.6
for conditions C1 to C5. A Friedman test showed significant
difference between the five conditions (�2(4) = 11.5, p =
0.0213, effect size Kendall’s W = 0.192), with pairwise
Wilcoxon signed rank tests between groups (Holm corrected)
revealing statistically significant differences in perceived
workload between C3 and C4 (p = 0.015), and the difference
between C1 and C4 being marginally significant (p = 0.081).

Condition C1 (graphics and pushing haptics) yielded the
best performance in terms of accuracy, while C3 (graphics
only) yielded the lowest perceived NASA-TLX workload,
although both differences between C1 and C3 were not

Fig. 8: Workload from the NASA-TLX

statistically significant. C2 has worse performance than both
C1 and C3 when it comes to accuracy, although it is better
than the haptic only conditions C4 and C5. It also has a
slightly lower perceived workload than C1. Overall, it seems
that the visual feedback was very helpful in discriminat-
ing force differences, but it showed indication of working
even better when paired with the pushing haptic feedback
in condition C1. Although the difference in performance
between C1 and C3 was not statistically significant, because
C1 showed an overall accuracy close to 100%, with no
participant performing worse than 73.3%, we will be using
this condition for force feedback in future work.

Interestingly, half of the participants were 100% accurate
in discriminating forces under condition C1. Given the
sensitive nature of our target application, we would want
to reach a target accuracy as close as possible to 100% for
all participants. In order to investigate possible explanations
for why some participants did worse than others in this
experiment, we looked at the position data as measured from

above 10N. This is repeated ten times. Figure 3b shows a
sample calibration. We found that a power fitting yielded a
good mapping of resistance values from the FSR to force.
This calibration procedure takes approximately five minutes,
making it easy to calibrate the sensor as needed.

Finally, Figure 2b shows a prototype for the wearable
haptic feedback interface for the trainee. This is done with a
glove and three vibrotactile motors (ROB-08449, Sparkfun),
which are activated in sequence to signal an insertion or
extraction command, with a distal-to-proximal activation
signifying insertion and a proximal-to-distal activation sig-
nifying extraction. This is similar to what was done in [23]
to deliver directional cues.

B. Mentor Side
Information on the force applied to the needle is delivered

to the mentor through a Geomagic Touch haptic device
and a virtual reality environment built with CHAI3D [34].
In this paper, we consider different combinations of haptic
feedback from the device and visual feedback in the virtual
environment to convey information to the mentor. Visual
feedback is obtained in through a virtual semi transparent
”ghost” end-effector that extrudes from the base needle
representation based on the force detected on the needle.
We refer to section IV-A for more details and pictures.

The haptic feedback delivered to the trainee is based
on vertical movement of the stylus by the mentor. Haptic
feedback to the trainee is not always active to prevent
accidental signals from being sent, but is activated by a
button press on the haptic device. Since this is a two-person
system, validation needs to be done on the effectiveness
of both the haptic feedback to the trainee and feedback to
the mentor. In the following sections we will describe our
experimental setup and results for validation of feedback to
the mentor, leaving evaluation of feedback to the trainee for
future work.

IV. METHODS
A. Rendering Feedback

In this section, we present an experimental setup to test
different forms of feedback for the mentor, and evaluate
them based on force classification accuracy. We considered

Condition label Feedback provided

C1 Graphics and pushing

C2 Graphics and pulling

C3 Graphics

C4 Pushing

C5 Pulling

TABLE I: Different conditions for user’s feedback

three forms of feedback: (i) haptic feedback in the form
of pushing against the trainee’s direction of movement, (ii)
haptic feedback by pulling along the trainee’s direction of
movement, and (iii) visual feedback (Fig. 4). These types of
feedback were provided individually, but also as combina-
tions of visual and haptic feedback, leading to five different
conditions as shown in Table I.

The magnitude of haptic feedback is proportional to the
force sensor signal on the instrumented spinal needle, and it
is mapped to the Z axis of the haptic device. For pushing
conditions (i.e., C1 and C4), positive haptic feedback is em-
ployed, i.e., as the trainee pushes the needle down, the Touch
device renders a reaction force that pushes the mentor’s hand
up (Fig. 4a), as if the mentor themselves was inserting the
needle. For pulling conditions (i.e., C2 and C5), negative
haptic feedback is employed where the haptic device will pull
on the mentor as the trainee pushes down on the needle (Fig.
4b). This aims to simulate real world training conditions for
needle insertion, where the mentor would hold the trainee’s
hand back as they perform an insertion.

For the graphical display, a ghost needle provides visual
feedback. This ghost needle is a projection of the needle’s
force along the axis of the stylus (Fig. 4c). The graphical
displacement is proportional to both the amount of force
measured on the needle and the displacement of the stylus
from the zero position, meaning the mentor can magnify
the visual feedback by moving the stylus. This was chosen
over a fixed displacement based on the amount of force in
a pilot study, where the fixed displacement was reported to
feel distractive and unresponsive, while multiplying by the
position-dependent gain increased the sense of control over

(a) Pushing. (b) Pulling. (c) Visual feedback.

Fig. 4: Forms of feedback. (a) pushing, where the stylus of the haptic device moves opposite to the direction of the trainee’s motion (b)
pulling, where the stylus moves in the direction of the trainee’s motion (c) graphics, where a transparent ”ghost” needle is a projection
of the trainee’s needle and an opaque needle visualizes the haptic stylus.
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(a) Tool Space Insertion/Extraction. (b) Tool Space Yaw. (c) Tool Space Pitch.

(d) Cartesian Space Vertical Motion. (e) Cartesian Space Lateral Motion. (f) Cartesian Forward/Backward Motion.

(g) Joint Space Elbow Extension/Flexion. (h) Joint Space Wrist Rotation. (i) Joint Space Wrist Flexion/Extension.

Fig. 4: Relationship between vibrotactile cues and desired movements for (a) tool space insertion (d) and rotation, (b) Cartesian space
insertion and (e) lateral motion, and (c) joint space insertion and (f) wrist rotation.

Tool space cues determine the rotation of the needle
directly in terms of yaw by eliciting a saltation effect around
the forearm (Fig. 4b), pitch by sequential activations of
motors above and below the distal portion of the forearm
(Fig. 4c), and insertion/extraction with a single activation of
a motor above or below the hand (Fig. 4a).

Cartesian space cues elicit a left/right lateral movement
with single activations of a motor on the each side of the
forearm respectively (Fig. 4e), a forward/backward move-
ment with a sequential activation of motors above the arm
(Fig. 4f) and an insertion/extraction movement with a single
activation above or below the forearm (Fig. 4d). It is worth
pointing out that these translations are meant to apply to
the tip of the needle, rather than just the arm of the user
(otherwise it would be impossible to use this system to rotate
the needle at the correct angle).

Finally, Joint space cues direct the user to rotate their wrist
around the forearm axis through a sequence of activations
around the forearm (Fig. 4h), elicit a rotation around the wrist
axis with a paired activations of couples of motors on the
hand and wrist (Fig. 4i) and command an extension/flection
movement for insertion/extraction of the needle through
paired activations of motors around the elbow joint (Fig. 4g).

V. EXPERIMENTAL METHODS

We ran a user study with twelve participants (age 22.8±
3.2, four females). All participants were right handed and did
not suffer from any physical or cognitive impairment, nor any
pathology that could affect tactile sensitivity of the forearm.
The methods and procedures described in this paper were

carried out in accordance with the recommendations of the
Institutional Review Board of University of Texas at Austin,
with written informed consent obtained from all subjects.

Sleeve

Virtual Environment

Haptic
Device

Directions
Map

Fig. 5: Experimental setup

Participants wore the sleeve on their right arm while using
a haptic device (Geomagic Touch, 3D systems) in a virtual
environment created in C++, and relying on Chai3D and Qt
for haptic rendering and GUI elements, respectively (Fig. 5
shows the experimental setup). Before each trial, partici-
pants assumed the same starting position and orientation,
as tracked by the haptic device and displayed by the virtual
environment. At the end of each trial participants pressed a
button on the haptic device stylus to move to the next trial.
Participants were encouraged to take breaks whenever they
felt it necessary, and there were mandated one minute breaks
between different phases of the study. The experiment took
approximately one hour and a half for each participant.

Fig. 8: Overview of testing trial results for a representative subject (S11). The circles represent the final position of the end effector.

(a) (b) (c)

Fig. 9: Overall accuracy for each cue modality.

Fig. 10: Overall accuracy box plot.

(p = 0.000488); Cartesian and Tool (p = 0.000488); and
Tool and Joint (p = 0.034).

The Cartesian modality appears to yield better accuracy,
as well as a smaller perceived workload. This is in contrast
with the results observed for the 2D case in [20], where
the Tool cue delivery approach showed better performance.
A possible explanation for this could be found in Figure 9,
and can be visualized more clearly in the interaction plot
shown in Figure 12. Participants did show good performance

Fig. 11: Workload from the NASA-TLX.

on Tool for the discrimination between W and E directions,
but had a harder time discriminating when these directions
were superimposed to S (accuracy for SE and SW is 66.7%
and 36.1% respectively). Similar, although less noticeable
changes of errors can be seen in the NW/NE comparison.
Interestingly, the Tool modality also caused participants to
commit a relatively high error when exposed to the S cue,
which was mistakenly identified as a N cue. These directions
corresponded to a pure pitch rotation, which is the additional
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shown in Figure 12. Participants did show good performance
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but had a harder time discriminating when these directions
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changes of errors can be seen in the NW/NE comparison.
Interestingly, the Tool modality also caused participants to
commit a relatively high error when exposed to the S cue,
which was mistakenly identified as a N cue. These directions
corresponded to a pure pitch rotation, which is the additional

dataset. Architecture B performs better than A in every case.
Both architectures consistently show lower MSE than both
PCA and KPCA, with up to a 50% improvement when
comparing architecture B with the PCA. Table V shows a
final overview of results for PCA, KPCA and autoencoders.

nc Training Validation Test

1 A 0.0698 0.0796 0.0675
B 0.0586 0.0653 0.0552

2 A 0.0462 0.0507 0.0422
B 0.0371 0.0428 0.0342

3 A 0.0341 0.0388 0.0317
B 0.0288 0.0348 0.0262

TABLE IV: Mean Square Errors for the autoencoders for the
40k subsamples dataset.

Fig. 4: Hand pose reconstructions comparison for a few hand
poses (obtained with nc = 3 principal components/degrees of
freedom).

D. Visual Comparison
We have shown in the previous section that both KPCA

and autoencoders yield lower MSE than the PCA in every
instance, with autoencoders in particular showing the highest
quantitative improvement in performance. Here we will show
visual reconstruction of a few hand poses for a qualitative
comparison, referring to the video3 for more views taken
from the data set. Figure 4 shows reconstructed hand poses
from the original data, taken for a few samples and fitted with

3https://www.dropbox.com/s/i6fmb6m8xeybvq4/ISMR_
2021_DimensionalityReduction_video.mp4?dl=0

nc = 1 nc = 2 nc = 3

Training
PCA - 40k 0.0895 0.0630 0.0487
PCA - full 0.0892 0.0630 0.0487

KPCA - 40k 0.0819 0.0533 0.0375
KPCA - full N/A N/A N/A
AE-B - 40k 0.0586 0.0371 0.0288
AE-B - full 0.0490 0.0357 0.0261

Validation
PCA - 40k 0.0998 0.0702 0.0534
PCA - full 0.0999 0.0702 0.0532

KPCA - 40k 0.0923 0.0625 0.0463
KPCA - full N/A N/A N/A
AE-B - 40k 0.0653 0.0428 0.0348
AE-B - full 0.0559 0.0411 0.0334

Test
PCA - 40k 0.0870 0.0636 0.0486
PCA - full 0.0872 0.0635 0.0486

KPCA - 40k 0.0787 0.0513 0.0366
AE-B - 40k 0.0552 0.0342 0.0262
AE-B - full 0.0453 0.0333 0.0244

TABLE V: Final overview of MSE for each technique. Note
that, as shown in Figure 5a, PCA and Kernel PCA do not
increase performance with an increase in the number of
samples, and that KPCA could not be applied to the full
dataset because of its demanding computational load for
large datasets.

nc = 3 for the PCA, polynomial Kernel PCA and the autoen-
coder network A. It can be seen that reconstructions from
the autoencoders shows a more realistic reconstructions of
the shape of the original poses, while both Kernel PCA and
PCA struggle to capture some of the shapes. More examples
of this can be seen in the attached video. This is an important
complement to the outcome of the MSE evaluation which,
while representative of an overall quantitative evaluation of
performance, fails to capture the effect that each joint angle
has on defining the overall hand grasp shape. The difference
in performance between autoencoders and the other two
methods for what concerns this aspect appears remarkable.
However, the video also highlights a drawback of the current
implementation of the autoencoder method, which being
static treats each grasp separately rather than considering
them as an evolution over time. This could explain the
discontinuities that can be seen when transitioning between
some of the hand shapes.

E. Effect of Sample Size
In the previous subsections we reported results for analysis

done on a subset of 40000 samples taken from the original
dataset, and the outcome for the full data set was only
mentioned for the autoencoder in Table V. The reason for
this was that 40000 was the highest number of samples that
the KPCA was able to handle, and a fair comparison requires
using the different techniques on the same data set.

On the other hand, being unable to deal with larger data
sets is a drawback of the KPCA when compared to other
methods, and if using more data leads to an increase in
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large datasets.
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complement to the outcome of the MSE evaluation which,
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performance, fails to capture the effect that each joint angle
has on defining the overall hand grasp shape. The difference
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