# NRI: FND: Improving Human-Robot Collaboration on Assembly Tasks by Anticipating Human Actions

PI: Stefanos Nikolaidis, Co-PI: Satyandra K. Gupta

ICAROS Lab (icaros usc.edu) and USC Center for Advanced Manufacturing (sites usc.edu/cam)

Students: Heramb Nemlekar, Neel Dhanaraj, Rishi Malhan, Santosh Narayan, Runyu Guan, Guanyang Luo and Angelos Guan

#### **Problem and Motivation**

- To proactively assist humans in assembly tasks, robots need to predict the next actions that humans will perform.
- However, humans can have individual preferences for which tasks they want to perform (task assignment) and the sequence in which to perform the tasks (task execution).
- Thus, robotic assistants must adapt to the human preferences and account for contingencies where humans will have to intervene to execute the tasks efficiently and fluently.

### **Human-Initiated Assembly**

Human-Guided Goal Assignment

**Problem:** Considering *user preferences for task assignment* when assigning goals based on the workload, task constraints and delays.

**Goal:** We want robots to evaluate the feasibility of completing the goals and present the user with diverse alternative goal assignments.

**Approach:** (i) Relax the deadline for specific goals and (ii) Remove certain goals from the robot's assignments.



#### **Generating Diverse Plans.**

- We use an integrated task and motion planning framework to find the best goal sequences and their task and motion plans.
- We evaluate the plans for delays and feasibility of goal completion.
- Robot records the best evaluated goal sequences, calculates their diversity and presents the user with a list of diverse plans.



#### Getting Human Guidance.

- x<sub>1</sub>: Change goal deadlines
- $x_2$ : Assign goals to robot
- $x_3$ : Allow robot to skip goals
- $x_4$ : Change goal probabilities

#### **Human Preference Learning**

**Problem:** Learning *user preferences for task execution* requires access to tedious and time-consuming demonstrations of their preferred sequence of actions in the actual assembly.

**Goal:** We want robots to accurately predict human actions without user demonstrations in the actual task. **Approach:** Exploit (i) similarities between users and (ii) similarities between tasks to learn preference priors.

#### Similarities Between Users.

- We group previous users into a small set of dominant preferences by clustering their demonstrations.
- For new users, the robot associates their actions with a dominant preference to predict their next action.



#### Similarities Between Tasks.

- We represent user preferences with respect to task-agnostic features, such as physical and mental effort.
- Robot learns and transfers a prior of user preference from demonstrations in a short, canonical task.



## **Robot-Initiated Assembly**

#### **Contingency-Aware Task Planning**

**Problem:** Assigning and scheduling tasks is challenging due to unexpected events such as delays and failures.

**Goal:** We want robots to explicitly consider such *contingencies*.

**Approach:** Use MILP solvers to return the state sequences for each candidate action and recursively sample contingencies.

- Run optimistic MILP solver from most likely next state and sample contingencies in the generated sequence.
- After constructing the state transition diagram, perform value backup and return the best action.



**Contingency resolution.** Humans will have to reset and perform repairs. Thus, robot may need to consider user preferences as in a human-initiated assembly.

Real-world human-robot cell for automated satellite assembly and potential contingencies, i.e., a battery module has gotten stuck, or a screwing operation has failed.

