NRI: FND: Life-long Learning for Motion Planning in Human Populated Environments -Bradley Hayes, Christoffer Heckman

- Using an online POMDP solver and precomputed RRT over the static elements of the scene, we solve for short-horizon control solutions that account for dynamic obstacles, informed by an inexpensive long-horizon plan to improve solution quality.
- Our method outperforms online social navigation approaches, capable of producing faster (higher maximum velocity) and safer (fewer "close calls") behavior more **quickly** (higher re-planning frequency) than existing POMDP methods.

- Constrained motion planning provides an avenue to a human-interpretable form of risk mitigation
- Sets of applicable constraints can change throughout a task, introducing a sequential constraint manifold planning problem.
- Manifold projection techniques enable samplingbased planners to produce constraint compliant trajectories, but changing applicable constraints during task execution without end-to-end replanning is currently infeasible.
- Planning roadmaps approximate constraint manifolds through sampling-based coverage...but this process is *computationally expensive*.
- Approach: Use observed behavior to learn an atlas of constrained PRMs offline for problemspecific constraint sets, transitioning roadmaps when constraints change.
- **Benefit:** Multi-constraint models that can inexpensively adapt to changes in the environment (e.g. new collision objects) and constraint requirements, making online constrained motion planning feasible.

Bradley.Hayes@Colorado.edu

Reusable Constrained Roadmaps for Online Sequential Manifold Planning

T1: Continual adaptive learning of context-aware predictive models for human activity

T1.1	Establish ba
	responding
	mobile robc
T1.2	Developing
	approach to
T1.3	Simulation f
	environmen
T2. Rick-Awara P	

T2: Risk-Aware Path Planning Using Learned Models for Cost-of-Failure Minimization

T2.1	Optimal con
T2.2	Reinforceme
T2.3	Importance

Intention-Aware Behavior Prediction

- heatmap indicating areas of interest.
- to identify features and objects in their vicinity.
- These features and objects are associated with being possible areas of interest in novel settings.
- with desirable destinations for humans, allowing for
- These priors, coupled with contextual observations of

Christoffer.Heckman@Colorado.edu

Research Thrusts

aseline context-aware human models for to the presence and movement of a

a self-supervised, lifelong-learning o navigating around humans.

for dynamic human-populated

ntrol in stochastic environments

ent learning for policy optimization

sampling for optimal policy search

• Using an observation-driven process, a robot is able to map observations of human behavior in a room to an occupancy

• Once sufficient data has been collected, the robot waits until human traffic dissipates and explores these areas of interest

• The robot is able to associate the presence of these features generalization of past observations into new environments.

objects humans are carrying (e.g., associating humans carrying mugs with having a coffee machine as a goal destination), facilitate more accurate human path prediction.

