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Challenge
• Cooperation for human-robot 

teams operating in complex 
environments evolving over 
time

Novel Solutions and this Talk:
1) Interaction based on natural language
2) Optimization for multiagent teaming
3) Integration: SaR mission, Firefighter input, Danger 

level inference, heterogenous planning with 
probabilistic constraints

Broader Impact
• Applications: SaR, homeland 

security, disaster response, …
• Outreach activities w/ high schools

Evolution of 
process and 

teams

three RA-L papers



Scene Perception enabled by 
Interactive Natural Language



Interactive Human-Robot Communication
• Prior NLP models 

– Primary focus is on one-way comm/simple models
– Fail in real-world situation when info is inadequate

• Our Approach: Interactive Communication
– Leverage models for language-based Re-ID
– Enable robot to anticipate if current info is adequate

• if not, robot can ask human for valuable information

• Key benefits
– Interactions focus on essential, task-related info
– High rate of task accomplishment

4

Prior 
Models

Our
Model

V Shree, WL Chao and M Campbell. “Interactive Natural Language-based Person Search,” in RA-L, 2020
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Interactive Human-Robot Communication
Task: ID people in crowd based on NL descriptions
Challenges:

1. Multi-modality of data (language and image)
2. Anticipate robot’s need for information

1) SOTA VQA model to assess text-image similarity
– Outputs matching score for gallery images

2) Entropy of NL-image match drives next questions
– 𝐸 = −∑!"#$ %𝑎! 𝑙𝑜𝑔 %𝑎!
– High Entropy à Low confidence à Ask human for additional information
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A girl with a ponytail hair, wearing 
pink shirt and white shorts.

0.05 0.9 0.3

Similarity Scores

VQA 
Model

a person with a ponytail, wearing 
a pink short and white shorts 



Interactive Human-Robot Communications
• Robot to human: Prepare prior list of questions

1. Describe appearance of clothes 
2. Describe accessories wearing or carrying

• Optimize ordering of questions via entropy
• Experiments with Jackal (average results shown):

6

4× Speed

Person detections

Min Entropy to Stop asking Questions

Camera-mounted Jackal

-- High Uncertainty
-- Low Uncertainty
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Min Entropy to Stop asking Questions
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Multi-Robot Search Planning for 
Scenes with Uncertainty 



Multi-Robot Planning for Search Missions
Goals:
• Reason over higher level: like humans do
• Solutions become layers of larger systems

How should the searchers move
to maximize the chance

of finding the target?

Multi-Robot Efficient 
Search Path Planning 

(MESPP[1])

Common abstractions:
• Low-level details: local planning, nav, control
• Represent environment as a graph
• Discrete time: each step = multiple actions
• General, combinatorial optimization problem

[1] Hollinger et al, 2009. Efficient multi-robot search for a moving target. The Intl Journal of Robotics Research 28.2: 201-219.

Simple search scenario.
Probabilities p represent belief of 
target location
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Multi-Robot Efficient Search Path Planning (MESPP)

9

[2] Asfora, BA, Banfi, J and Campbell, M, Mixed-Integer Linear Programming Models for Multi-Robot Non-Adversarial Search. IEEE RA-Letters, 2020

We proved MESPP is NP-hard[2] even for...
• grid graphs
• one searcher
• stationary target
• perfect sensing

simplest MESPP problem is at least as hard
as well-known intractable problems

...and noticed it could be formulated via linear constraints

First set of Mixed-Integer Linear Programming (MILP)
models for tackling the MESPP problem
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MILP Optimization for Planning for MESPP

[1] Hollinger et al, 2009. Efficient multi-robot search for a moving target. The Intl Journal of Robotics Research 28.2: 201-219.
[2] Asfora, BA, Banfi, J and Campbell, M, 2020. Mixed-Integer Linear Programming Models for Multi-Robot Non-Adversarial Search. IEEE RA-Letters, 5(4), pp.6805-6812
[3] Code is open source and available at https://github.com/basfora/milp_mespp.git

90x faster than SoA
Run time: SoA [1] vs MILP models [2] on distributed approach
Equal: conditions, environments, collected reward

• Fast and scalable probabilistic search
• Centralized and distributed solutions[3]
• First MILP model to encompass:

• multiple searchers
• arbitrary capture ranges
• false negatives

ASFORA et al.: MIXED-INTEGER LINEAR PROGRAMMING MODELS FOR MULTI-ROBOT NON-ADVERSARIAL SEARCH 6811

Fig. 5. Solution times with distributed approach,h = 10 and varyingm. Left:
OFFICE. Right: GRID-FN.

Fig. 6. Performance of distributed and centralized MILP approaches for
OFFICE and GRID-FN, h = 10. Left: Relative reward loss computed at t = 0.
Right: Average mission time. Bars show the std. error of the mean.

which can be seen by comparing the solution times in Fig. 5
(left, right) and Fig. 3 (respectively left, right). The following
results from OFFICE illustrate this claim: although for m = 1
the median computational times of the centralized and dis-
tributed approaches are similar, respectively 0.52 sec and 0.54
sec, for m = 5 these values increase to approximately 1800 sec
(centralized) and 1.46 sec (distributed). In comparative terms, a
5x increase in the team size caused the median solution time to
increase 3x for the distributed algorithm, against a drastic 3400x
increase in solution time for the centralized approach.

3b) Comparative performance of online (distributed) and
offline (centralized) MILP search plans: As basis for compari-
son, we introduce two metrics: the average mission time, defined
as the time-step the mission ends due to the expiration of the
deadline or capture of the object; and the relative reward loss,
defined as the percentage difference between the distributed and
centralized reward functions computed at time t = 0. Fig. 6
shows the relative reward loss (left) and the average mission
time (right) for OFFICE and GRID-FN, for a mission deadline
τ = 50 with h = 10 and varying m.

The relative reward loss for the environments studied in this
letter is minimal, as shown in Fig. 6 (left). The higher loss is
seen for the OFFICE environment (within 3% of optimal reward)
and slightly lower for GRID-FN (2% difference). Recall from
Fig. 3 (right) that the centralized approach often fails to solve
the GRID-FN problem to optimality in the time given, which
might result in a sub-optimal offline plan, however with a higher
reward when compared to the proposed distributed plan. This
small difference in reward translates into an overall shorter, if
at times irrelevant,4 average mission time for the centralized
approach (see Fig. 6, right). Given the same planning horizon,

4Note for m = 3 in GRID-FN, the false negative causes the actual detection
of the target in the distributed, but not in the centralized instance.

Fig. 7. Comparison of MILP and SoA [1] distributed approaches for OFFICE,
MUSEUM and GRID-FN, m = 3 and varying h. Left: Average solution time
(log scale). Right: Solution time decrease with MILP (relative change with SoA
as the reference value). Bars show the std. error of the mean.

Fig. 8. Performance of MILP distributed approach, h = 5, 10 for OFFICE,
MUSEUM and GRID-FN. Left: Average mission time. Right: Average solution
time. Bars show the standard error of the mean.

the distributed approach often performs nearly as well as the
centralized, both w.r.t. reward (within 3%) and mission time
(within 6%), with the advantage of requiring significant less
time.

4) Comparison Between MILP Approach and Previous State-
of-the-Art (SoA) Algorithm: The solution times for varying plan-
ning horizons and m = 3 are shown in Fig. 7 for MUSEUM,
OFFICE and GRID-FN.

The implicit coordination algorithm (SoA) was implemented
in C++ by the authors.5 as presented in [1]. The same machine
is used to run the MILP and SoA experiments, and no time limit
is imposed. While the algorithms provide interchangeable solu-
tions (same computed reward), the computational time required
to do so varies greatly between them. The MILP paradigm out-
performs the previous SoA w.r.t. computational time in all cases,
and this difference becomes more expressive as the planning
horizon increases (see Fig. 7, left). In average terms, for h = 8
and m = 3 in the environments tested in this letter, the MILP
models allow for a solution time decrease of 98% compared to
the previous SoA (see Fig. 7, right).

5) Performance of the MILP Distributed Approach With Dif-
ferent Planning Horizons: Fig. 8 shows the average mission
time for τ = 50 and the solution time with h = 5, 10 for OF-
FICE, MUSEUM and GRID-FN.

For both OFFICE and MUSEUM there is virtually no differ-
ence in performance for the planning horizons tested (Fig. 8,
left). For GRID-FN, the imposed restriction on searchers and
object’s initial positions (Sec. VII-A) creates a more challeng-
ing planning scenario given their relative initial distance. For
this case, a longer planning horizon yields better performance,

5Code is open source and available at https://github.com/jacoban/implicit_
coordination

Authorized licensed use limited to: Cornell University Library. Downloaded on September 09,2020 at 11:46:12 UTC from IEEE Xplore.  Restrictions apply. 
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Firefighter Search & Rescue Mission:
Cmdr NL, Danger Inference, Risk Aware Planning



Big thanks to Assistant Chief Tom Basher (City of Ithaca Fire Dept) and Chief George Tamborelle (Cayuga Heights Fire Dept)

Scene Understanding via Domain Knowledge
According to Ithaca firefighters[6]
• Decisions are made based on risk vs reward

• risk a lot to save a lot, risk nothing if you are saving nothing

• Search plan has priority areas
• goal is to stand between victim and danger
• experience and current situation dictates path

• First responders need succinct and reliable information
• who, where, what – not a stream of constant data

• Danger perception is qualitative
• standard training with combined factors, but no official scale

Sources: cityorithaca.org, chfd.info

Led to strategies for using natural language, the language itself, and planning optimization
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Scene Perception via Human+Robot Fusion
• Robots: Good at detecting low level features
• Humans: Good at high-level scene 

understanding like danger

• Goal: unify scene perception by leveraging 
both, robots’ and humans’ abilities. 
– Best of both worlds

13

• Scene danger-estimation approach:
– Expert (mission commander) provides descriptions and danger-levels
– Scene/Description similarity assessment using an ML Model
– Danger inference using a probabilistic model combining both

V Shree*, B Asfora*, R Zheng, S Hong, J Banfi, M Campbell. “Exploiting Natural Language for Efficient Risk-Aware Multi-robot SaR Planning,” RA-Letters, 2021

10 March 2021NSF NRI Meeting, M Campbell



Danger Level Inference: NL+Images
• Data collection to train ML model

– Use Synthetic disaster images
– 4000 sentence descriptions from AMT

• Inferred Danger Level
– Fuse similarity scores across images
– Results demonstrate estimated danger 

to be similar to ground truth data
• Key Advantages

– Can adapt to different emergencies 
without retraining

– Danger estimates can be leveraged to 
plan safer human-robot mission

14

Word-cloud of sentences

Ground Truth (AMT) Inferred Danger
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Evolution of MILP Planner to Risk Aware MESPP

Prior Work:
• nodes: prob of target location
• Focuses on team performance

Risk-Aware MILP Planner:
• nodes: added prob of agent loss given danger
• Includes both performance and safety
• Conditional planning based on online info
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[4] V Shree*, B Asfora*, R Zheng, S Hong, J Banfi, M Campbell. “Exploiting Natural Language for Efficient Risk-Aware Multi-robot SaR Planning,” RA-Letters, 2021
[5] Jeon, 2019. DISC: A Large-scale Virtual Dataset for Simulating Disaster Scenarios. In IROS (pp. 187-194)

DISC dataset[5]
normal, fire and collapse images

Risk-aware planner is safer, 
similar performance to 
baseline[4]

• Reduces agent loss overall
• Customized Danger Thresholds 

allow protection of valuable 
agents (e.g. humans)
• Similar search timing
• Slight decrease in success rate
• Slight increase in mission time 

Risk-award MILP for Semi-Autonomous Search Missions
Shared Perception, Autonomous Planning
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Summary and Conclusions
• Our project develops methods to enable 

cooperating human-robot teams
– Interactive Natural Language
– Scalable, multi-robot planning 

• Particularly suited for complex environments 
evolving in space and time

• Current Risk-Aware planner leverages natural 
language and optimization to balance 
performance and safety across the team

Our
Model
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