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Biological	Joint	Moment	Estimation

• Human hip augmentation has been shown to have high 
impacts in improving gait.

• Exoskeleton assistance has been optimized to 
maximize performance from both hardware and 
controller perspective (Lee, JPO 2020)

• Incorporating myoelectric sensing into the exoskeleton 
controller also provides the opportunity to predict the 
wearer’s future intent.

• Estimation of the user and environmental state can be 
used to provide seamless assistance across 
ambulation modes.

Intent	Recognition	using	Sensor	Fusion

Exoskeleton	studies	vs.	metabolic	cost	
benefit	(Sawicki,	JNER	2020)

Robust	Prediction	of	User-state	Variables

Advanced	Hip	Exoskeleton	Design

Exoskeleton Specifications

Peak Torque: ~ 120 Nm

Max Continuous Torque: ~ 50 Nm

Max Speed: ~ 8 rad/sec

Torque Bandwidth:  13 Hz

Actuator Weight (x2): 2.194 kg

• User intent recognition such as predicting the user’s locomotion mode is 
paramount in translating robotic exoskeleton technologies to a more realistic 
setting such as outdoor locomotion (Kang, Biorob 2020)

• Accurate and continuous prediction of user’s locomotion mode is critical in 
ensuring a natural exoskeleton assistance is provided to the user (Kang 2021 –
In Prep)

• Robust estimation of different user state information is critical feature for 
controlling exoskeletons to provide an effective joint assistance.

• Ground slope influences the user’s biological demand indicating a need for a 
change in exoskeleton assistance level (Lee, RAL 2021 – Under Review).

• Gait phase variable dictates the user’s movement during locomotion which is 
directly correlated with the exoskeleton assistance timing (Kang, RAL 2021).

Harmonic Drive-based Series Elastic Actuator SEA-driven Bilateral Robotic Hip Exoskeleton

Experimental Setup for Controlling Human Subject Locomotion Data

Locomotion Mode Independent Gait Phase Estimation Strategy using CNN

Neural Network-based Ground Slope Predictor for Modulating Knee Exoskeleton Assistance Magnitude

Real-Time Slope Prediction on Treadmill
While Varying Slope Inclines

Continuous Locomotion Mode Classification

User Independent Continuous Locomotion Mode Classification Strategy

Locomotion Mode Independent Gait Phase Estimation

Real-Time Slope Prediction

Experimental Setup for Controlling Human Subject Slope Prediction Data

Real-Time Assistance Magnitude Modulation
With Ground Slope Change

User-Independent Hip Moment Estimation

Online Validation of Gait Phase Estimator
For Multimodal Locomotion

Overall Joint Moment Estimation Performance
Compared to Baseline Method

Model Generalization to Ambulation Mode Transitions

Wearable Sensor-Based Hip Moment Prediction

Sensor Type Selection
based on Ambulation Mode and Anticipation Time

Model Prediction Performance
based on Ambulation Mode and Anticipation Time

Best Model (Temporal Convolutional Network)
Experimental Setup for Collecting Wearable Sensor Data 

during Overground Ambulation

Model Generalization to Hold-Out Ambulation Conditions (i.e., ground slopes and stair heights)

Transition Point Label Effect of Dropping Mechanical Channel Effect of Changing IMU Location

Experimental Setup for Controlling Human Subject 
Gait Phase Estimation Data

• Estimating user’s biological joint moment using wearable sensors could provide a single, 
continuous gait variable to dynamically modulate assistance (Molinaro, BioRob 2020).

• Deep neural networks can estimate biological hip moment of a novel user from wearable 
sensor data and generalizes to unseen gait contexts (Molinaro 2021 – In Prep).

• Machine learning models can anticipate future joint moments, which are improved by EMG 
data when anticipating up to 150 ms into the future (Camargo, TBME 2021 – Under Review).

• Utilizes convolutional neural network to extract mechanical sensor information 
(encoder and IMU) from the exoskeleton device to estimated the user’s 
locomotion mode (level ground, ramp as/descent, and stair as/descent).

• Overall ML model performance had an overall estimation RMS error of 5% beating 
the convolutional analytical method (using a foot switch) by 67%.

• Deep neural network uses the IMU (shank and thigh) and joint encoder data to predict the 
user’s ground slope incline at heel contact (swing phase data) during locomotion.

• Optimized ML model was able to generalize well and predict accurately with an RMS error 
of 1.5° across different slope inclines (even outside the region of training data set).

• Comprehensive understanding of how to utilize exoskeleton’s sensory information for a 
robust locomotion mode classification is limited.

• Study explores different ML algorithms for developing a continuous user-independent 
locomotion mode classification (optimized neural network model predicts the user’s 
locomotion mode with a classification accuracy of 90%).

• A temporal convolutional network was used to estimate flexion/extension hip torque using hip 
goniometer and IMU data, trained using torque from inverse dynamics (0.13 Nm/kg overall RMSE).

• The model outperformed a baseline method (p < 0.05) common to exoskeleton control and 
generalized well to unseen mode transitions and ramp and stair conditions.

• User-specific machine learning models predicted hip torque for varying anticipation times with an 
average MAE ranging from 0.06 Nm/kg (0 ms anticipation) to 0.11 Nm/kg (250 ms anticipation).

• Feature selection for each anticipation time showed that EMG was more useful for predicting with 
anticipation times within 150 ms, which may be driven by the electromechanical delay of muscles.


