Robust Learning of Sequential Motion from Human Demonstrations to Enable Robot-guided Exercise Training

PI: Momotaz Begum¹; Co-PIs: Dain LaRoche² and Sajay Arthanat³; Award ID: 1830597

Tea making Demonstration

¹ Computer Science, ² Exercise Science, ³ Occupation therapy

Challenge (2020)

- Learning to optimize a trajectory
- Dealing with adversarial demonstrations

Solution:

- Formalizing PSM as an Inverse Optimal Control problem: 1. Optimizes
 Energy, Torque, and Jerk 2. Considers Dynamic limitations of the robot as
 constraints 3. Can deal with end-effector loads (IROS 2020)
- A Maximum-entropy based robust policy learning framework: Identify and discard adversarial demonstrations from training pool (NeurIPS 2020)

University of New Hampshire Scientific Impact

- A robust trajectory learning algorithm
- Adversaries in LfD

Broader Impact

- Motor rehabilitation service is critical for healthy living.
- Therapist shortage can be mitigated by leveraging robots that can learn from demonstrations