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NRI: Self-Supervised Object Detection and 
Visual Navigation

• Learning visual representations for navigation and mapping
• Novel Out-of-Distribution Object Detection



Learning visual representations for navigation and mapping

Mapping and localization difficulties: 
data association, choice of models, 
global optimization, loop closure, 
scalability, followed by planning and 
control
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Figure 3. Example images with annotation from our dataset.

out IR pattern; however, we visually inspect the 3D point
cloud and believe the depth map quality is too low for use in
accurate object recognition for outdoors. We thus only use
this sensor to capture indoor scenes. Figure 2 shows its raw
depth is worse than that of other RGB-D sensors, and the
effective range for reliable depth is shorter (depth gets very
noisy around 3.5 meters). But this type of lightweight sen-
sor can be embedded in portable devices and be deployed at
a massive scale in consumer markets, so it is important to
study algorithm performance with it.

Asus Xtion and Kinect v1 use a near-IR light pattern. Asus
Xtion is much lighter and powered by USB only, with worse
color image quality than Kinect v1’s. However, Kinect v1
requires an extra power source. The raw depth maps from
both sensors have an observable quantization effect.

Kinect v2 is based on time-of-flight and also consumes sig-
nificant power. The raw depth map captured is more accu-
rate, with high fidelity to measure the detailed depth differ-
ence, but fails more frequently for black objects and slightly
reflective surfaces. The hardware supports long distance
depth range, but the official Kinect for Windows SDK cuts
the depth off at 4.5 meters and applies some filtering that
tends to lose object details. Therefore, we wrote our own
driver and decoded the raw depth in GPU (Kinect v2 re-
quires software depth decoding) to capture real-time video
without depth cutoffs or additional filtering.

2.2. Sensor calibration

For RGB-D sensors, we must calibrate the camera in-
trinsic parameters and the transformation between the depth
and color cameras. For Intel RealSense, we use the default
factory parameters. For Asus Xtion, we rely on the default
parameters returned by OpenNI library without modeling

radial distortion. For Kinect v2, the radial distortion is very
strong. So we calibrate all cameras with standard calibra-
tion toolbox [5]. We calibrate the depth cameras by comput-
ing the parameters with the IR image which is the same with
the depth camera. To see the checkerboard without overex-
posure on IR, we cover the emitter with a piece of paper.
We use the stereo calibration function to calibrate the trans-
formation between the depth (IR) and the color cameras.

2.3. Depth map improvement

The depth maps from these cameras are not perfect, due
to measurement noise, view angle to the regularly reflec-
tive surface, and occlusion boundary. Because all the RGB-
D sensors operate as a video camera, we can use nearby
frames to improve the depth map, providing redundant data
to denoise and fill in missing depth.

We propose a robust algorithm for depth map integration
from multiple RGB-D frames. For each nearby frame in a
time window, we project the points to 3D, get the triangu-
lated mesh from nearby points, and estimate the 3D rotation
and translation between this frame and the target frame for
depth improvement. Using this estimated transformation,
we render the depth map of the mesh from the target frame
camera. After we obtain aligned and warped depth maps,
we integrate them to get a robust estimation. For each pixel
location, we compute the median depth and 25% and 75%
percentiles. If the raw target depth is missing or outside
the 25% � 75% range and the median is computed from
at least 10 warped depth maps, we use the median depth
value. Otherwise, we keep the original value to avoid over-
smoothing. Examples are shown in Figure 2. Our depth
map improvement algorithm, compared to [72] which uses
a 3D voxel-based TSDF representation, requires much less
memory and runs faster at equal resolution, enabling much

[Zhu al. ICRA’17] [Das et al. CVPR’18]

[Atanasov et al. ICRA’17][Song SUN RGB-D et al.]

End-to-end learning policies for goal 
or target driven navigation without a 
map



Learning visual representations for navigation and mapping

Short range visual navigation

• Use learning to improve matching 
• End-to-end visual servoing/homing 
• Deep Q-learning framework with image error dense 

reward structure

• Goal specified as object detected by object  detector
• Goal specified as desired view

Y. Li, J. Kosecka. Learning View and Target Invariant Visual Servoing
for Navigation, ICRA 2020



Mid-range target driven visual navigation

• Goal specified as semantic target 
category not in the FOV of the agent

• Learn a policy for finding the target
using semantic features while 
simultaneously learning to localize
and build 2D allocentric semantic map

G. Georgiakis, Y. Li, J. Kosecka. Simultaneous Mapping and Target Driven 
Navigation, arXiv 2019 

Learning visual representations for navigation and mapping



Mid-range target driven visual navigation

• Mapping module localizes the agent by registering observations 
in the map using distilled semantic and appearance information 
stored in the map and uses the build so far to find the target

Learning visual representations for navigation and mapping

G. Georgiakis, Y. Li, J. Kosecka. Simultaneous Mapping and Target Driven 
Navigation, arXiv 2019 



Novel Out-of-Distribution Object Detection
• Detect the objects from different categories object detector or a semantic 

segmentation model in the training data. 
• Unknow objects obstacles, self-supervised object discovery

Semantic 
Segmentation

Outlier 
Detection

RGB Input



• Semantic segmentation on object proposals accompanied with uncertainty estimates
• Train a model that classifies object proposals with the help of both semantic 

segmentation and object detection features as unknown or known objects

Task: Novel Out-of-Distribution Object Detection



Improve faulty predictions of  Mask-RCNN 
Task: Novel Out-of-Distribution Object Detection

Thank you !


