Soft Wearable Robots for Injury Prevention and Performance Augmentation (Grant # 1830613, Poster # 126) Hao Su (PI), Alessandra Carriero (Co-PI), Yingli Tian (Co-PI), City University of New York

New Actuation Paradigm: Quasi Direct Drive

- High torque density motors
- High compliance and control bandwidth

Quasi Direct Drive **Geared Motor with Series Elastic Force/Torque Sensor** Actuator Actuator [Ours] (\mathbf{X}) Compliance Low Medium High High Bandwidth Low X High **~** X High Efficiency Low Medium High torque High ratio gear Conventional density motor motor Spring Actuation 000 Load Paradigm Conventional Load motor Load Low ratio gear

High torque motor High compliance

Ours

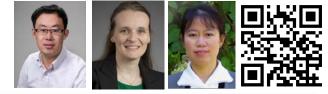
0.76

1145

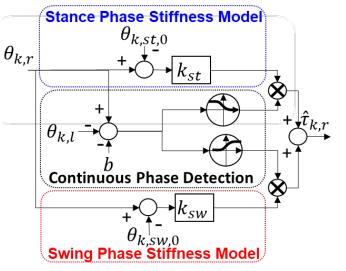
165

Most Lightweight Knee Exoskeleton

- 2.1 kg, 20 Nm
- Compliant and intrinsically safe

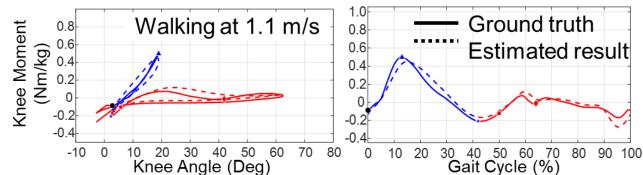


Yu, et al. Quasi-direct drive actuation for a lightweight hip exoskeleton with high backdrivability and high bandwidth. IEEE/ASME Transactions on Mechatronics, 2020 (Best student paper award finalists)

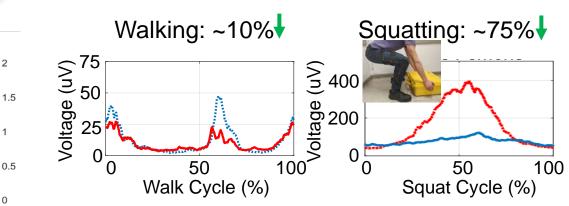

Soft Wearable Robots for Injury Prevention and Performance Augmentation (Grant # 1830613, Poster # 126)

 K_{nee}^{60} Angle(Deg)

Model-based Torque Estimation for Continuous Control


- Discrete control \rightarrow continuous control (stiffness-inspired)
- Simple, analytical, adaptive to walking speeds

Estimated biological torque:


$$\hat{F}_{k,r} = [1 - S(\theta_{k,r}, \theta_{k,l})]k_{st}(\theta_{k,r} - \theta_{k,st,0}) + S(\theta_{k,r}, \theta_{k,l})k_{sw}(\theta_{k,r} - \theta_{k,sw,0})$$

Knee Moment(Nm/kg)

Versatile Controller

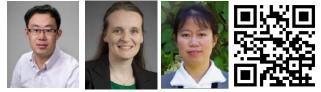
Reduced muscle activities for walking squatting

Huang, et al. Modeling and Continuous Stiffness Torque Control of Quasi-Direct-Drive Knee Exoskeletons for Versatile Walking Assistance, IEEE Trans. Robotics, 2021 (in review)

Continuous Phase Stiffness Model

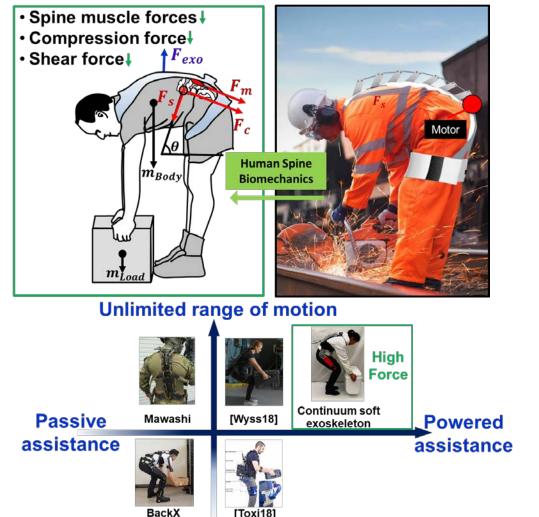
Stance

Swing

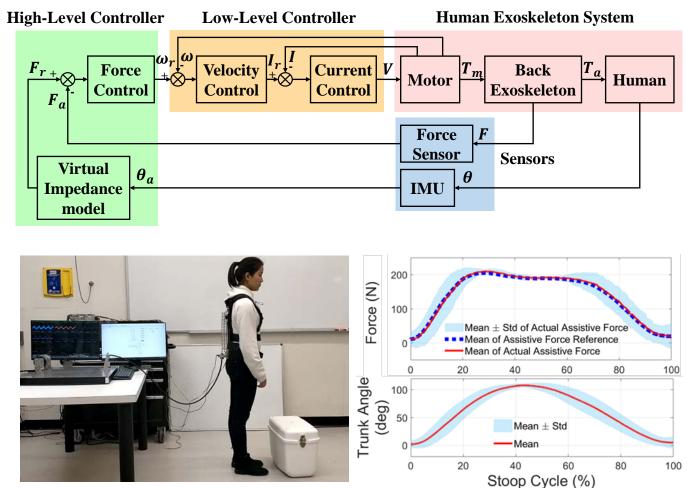

Knee Angle

Difference (Deg)

-50


-0.5

Soft Wearable Robots for Injury Prevention and Performance Augmentation (Grant # 1830613, Poster # 126)


Continuum Soft Back Exosuit

• Reduce 3 forces along spine

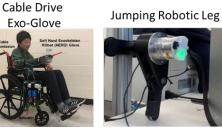
Modeling and Control

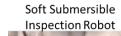
• Stoop assistance, high force output (220N)

Limited range of motion

Yang, Huang, Hu, Yu, Zhang, Yue, Su. Spine-Inspired Continuum Soft Exoskeleton for Stoop Lifting Assistance. IEEE Robotics and Automation Letters, 2019

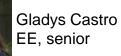
Soft Wearable Robots for Injury Prevention and Performance Augmentation (Grant # 1830613, Poster # 126)

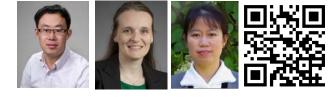

- Journal (3 published, 2 in review)
- 1. Yang, Huang, Hu, Yu, Zhang, Carriero, Yue, Su. Spine-Inspired Continuum Soft Exoskeleton for Stoop Lifting Assistance. IEEE Robotics and Automation Letters, 2019
- 2. Yu, Huang, Lynn, Sayd, Silivanov, Park, Tian, Su. Design and Control of a High-Torgue and Highly-Backdrivable Hybrid Soft Exoskeleton for Knee Injury Prevention during Squatting . IEEE Robotics and Automation Letters (RA-L), 2019
- 3. Yu, Huang, Yang, Jiao, Yang, Chen, Yi, Su. Quasi-direct drive actuation for a lightweight hip exoskeleton with high backdrivability and high bandwidth. Trans. on Mechatronics (T-MECH), 2020. (Best student paper award finalists)
- 4. Huang, Zhang, Yu, MacLean, Di Lallo, Bulea, Su, Modeling and Continuous Stiffness Torque Control of Quasi-Direct-Drive Knee Exoskeletons for Versatile Walking Assistance, Trans. on Robotics (T-RO), 2021 (in review)
- 5. Yu, Huang, and Su. Artificial Neural Network-Based Activities Classification and Gait Phase Prediction: Application for Exoskeleton Control, Trans. on Biomedical Engineering (TBME) (in review)
- International conferences (2 awards) + 18 undergrad student projects
- 1. Salmeron, Juca, Mahadeo, Yu, and Su, International Conference of Wearable Robotics Association (WearRAcon), 2020 (2nd prize, Innovation Challenge)
- 2. Salmeron, Juca, Ma, Yu, Su, "Untethered Electro-Pneumatic Exosuit for Gait Assistance of People with Foot Drop", Design of Medical Devices Conferences, 2020 (2nd prize, Three-in-Five Competition)
- 3. Yuen, Nogacz, Chi, Ferdousi, Yu, Su, "Oxeous Back-Support Exoskeleton: Soft, Active Suit to Reduce Spinal Loading", Design of Medical Devices Conferences, 2019.
- 4. Yu, Perez, Barkas, Mohamed, Eldaly, Su, "Soft High Force Hand Exoskeleton for Assistance of Stroke Individuals," Design of Medical Devices Conferences, 2019
- 5. Yang, Huang, Yu, Su, Spungen, Tsai, "Machine Learning Based Adaptive Gait Phase Estimation Using IMU Sensors," Design of Medical Devices Conferences, 2019



Cable Drive Knee

https://assistiverobotcenter.github.io





Pediatric Knee Exoskeleton

