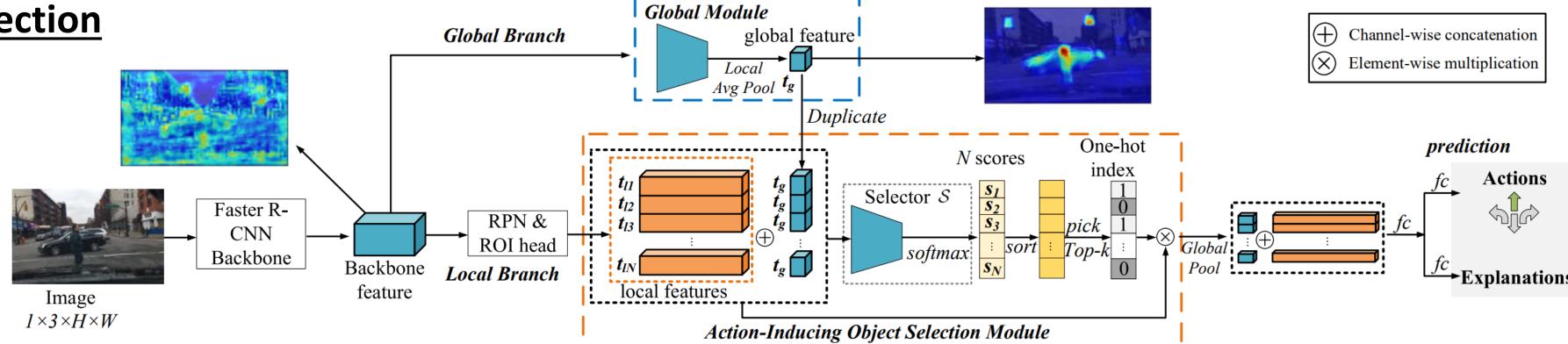
Action-Induced Object Detection NRI: FND: Towards Scalable and Self-Aware Robotic Perception

PI: Nuno Vasconcelos, UC San Diego https://www.nsf.gov/awardsearch/showAward?AWD_ID=1924937

 Introduction We define action-inducing object detection simultaneous prediction of allowable actions and detection of objects that constrain those actions 							
 Given a complex scene rather than all objects in the scene, detect only those important to driving decisions these are action-inducing objects: pedestrians, traffic lights, cars on the road, etc. also, predict the actions allowable 	• • Le						
 Benefits less complexity higher prediction accuracy finite explanation vocabulary, e.g. "slow down because the light is red and there are pedestrians crossing" 	• - -						
Image Image <td< th=""></td<>							
Action Inducing ObjectsMultiple-Action SuggestionWith Explanation $\widetilde{Traffic}$ $\widetilde{Iraffic}$ $\widetilde{Iraffic}$ $\widetilde{Iraffic}$ $\widetilde{Iraffic}$ $\widetilde{Traffic}$ $\widetilde{Pedestrians}$ $\widetilde{Iraffic}$ $\widetilde{Iraffic}$ $\widetilde{Iraffic}$	- • -						
BDD-OIA Dataset							


- based on BDD100K
- only complex scenes
- 8 pedestrians, 12 vehicles per scene on avg
- 4 action categories
- 21 possible explanations
- labeled for feasible actions, and their explanations

2021 NRI & FRR Principal Investigators' Meeting March 10-12, 2021

eep Learning Architecture for AIO Detection

- Faster R-CNN backbone
- Global processing branch to model context
- Localized processing branch to detect objects
- Selection module to identify AIOs according to scene context
- Prediction heads for actions and explanations

earning Details

Training with a multi-task loss for action and explanation prediction

Global Module

generates global features t_a from the Faster R-CNN backbone features It is composed of two convolutional layers with ReLU activation functions plu local average pooling operation

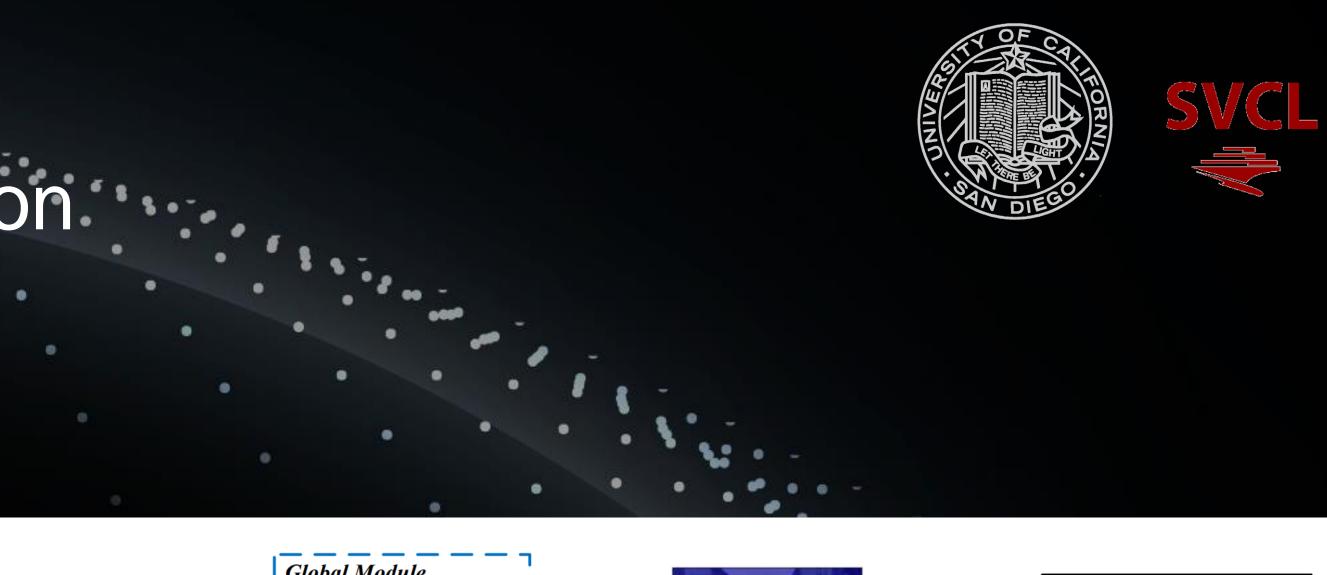
 $\mathcal{L} = \mathcal{L}_A + \lambda \mathcal{L}_E$

Action-Inducing Object Selection Module

- pick action-inducing objects from all object proposals produced by the Faster CNN
- N local feature tensors t_{l_i} are first extracted from the proposal locations and concatenated with the global feature t_q to form an object-scene tensor per object A selector S then chooses the action-inducing objects from these tensors

Behind these

- The combination of local and global features and end-to-end supervision enables the network to reason about scene-object relationships
- produce a global feature map more selective of action-inducing objects than the backbone feature maps


Experiments

Interplay between actions and explanations

- Action prediction performance improves with the quality of the explanations.
- The requirement to justify why actions can be taken makes the system more accurate in the prediction of which actions to take.

λ	F	S	L	R	action mF1	action F1 _{all}	explanation F1 _{all}
0	0.783	0.758	0.419	0.568	0.632	0.675	-
0.01	0.819	0.760	0.504	0.605	0.672	0.696	0.329
0.1	0.784	0.769	0.562	0.627	0.686	0.709	0.371
1.0	0.829	0.781	0.630	0.634	0.718	0.734	0.422
∞	-	-	-	-	-	-	0.418

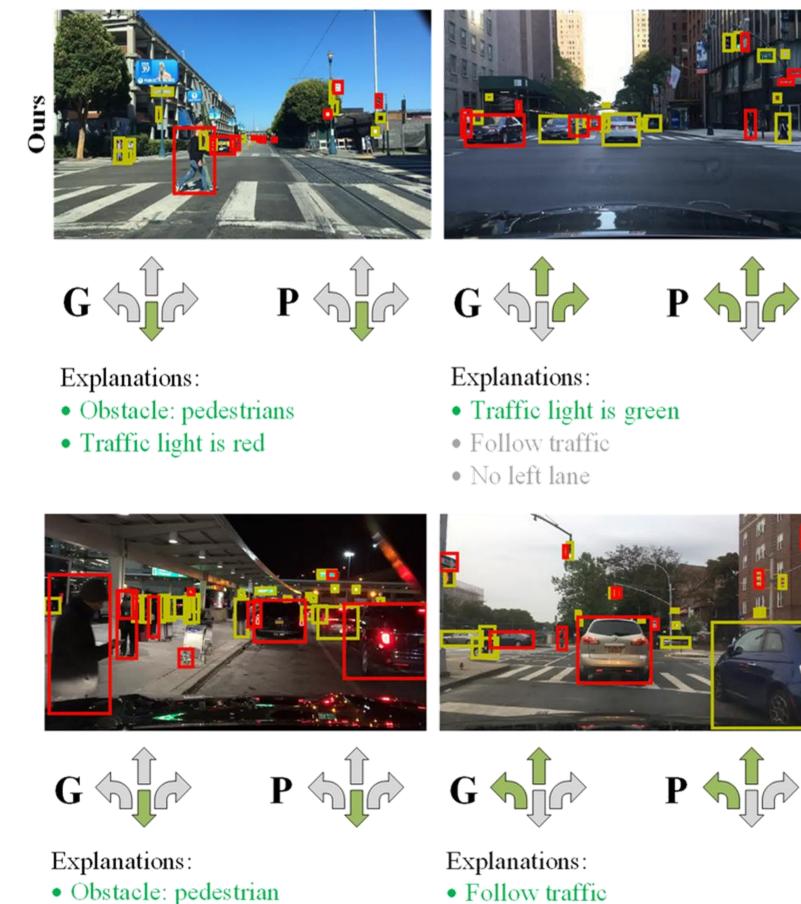
- Conversely explanations also benefit from action prediction.

Experiments

Interplay between local and global branch

- **Global context** is important to reason actions (A) and explanations (X)
- The two-branch model performs better even with random object selection
- The proposed AIO module highly improves the performance

lus a	models	F	S	L	R	A mF1	A F1 _{all}	X mF1	X $F1_{all}$
	only local branch	0.760	0.649	0.413	0.473	0.574	0.605	0.139	0.351
	only global branch	0.820	0.777	0.499	0.621	0.679	0.704	0.206	0.419
	random selection	0.823	0.778	0.499	0.637	0.685	0.709	0.197	0.413
	select top-5	0.821	0.768	0.617	0.625	0.708	0.720	0.212	0.416
er R-	select top-10	0.829	0.781	0.630	0.634	0.718	0.734	0.208	0.422

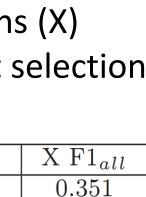

Visualization

Boxes yellow: Faster R-CNN detected, red: action-inducing objects **Explanations green:** correct, red: incorrect, gray: missing

• Obstacle: car

• No left lane

• Obstacle on the right



Award ID#: 1924937

• Follow traffic

• Traffic light is green

• Obstacle on the right

