Using Multi-Modal Data to Enable Learning-Based Awareness of Human Grasp Preferences in Co-Robot Manipulators

NRI: FND: Using Multi-Modal Data to Make Robotic Grasp Algorithms Aware of Human Preferences for Safe Collaborative Robot-Human Handover Interactions with Novel Objects, Award Number: IIS-2023998 Start Date: 10/15/2020, PI: N. Banerjee, Co-PI: S. Banerjee, Clarkson University, Session 4, #21

Where? (Location) How? (End Pose)

Key Problem: Imbibing robotic manipulators with understanding on human preferences for object handover Significance: Enabling safe human-aware collaborative human-robot interactions in the wild

When? (Release)

Solution: Use multi-modal data on multi-person handover of objects to learn human preferences on hold, end pose, and release time

Multimodal Recording Environment

Key Innovations:

- ullet
- ullet
- ullet

Depth data for how to handover (3D information on preferred

Depth data for when to release (3D information timing of grasp

Lead 3D capture of 30 subjects performing handover interactions with 480 objects using calibrated multi-viewpoint multi-sensor environment

Provide deep learning algorithms to recognize human handover preferences from input 3D representations of objects as input

Enhance learning-based grasp algorithms to be human-aware

Solution: Use multi-modal data on multi-person handover of objects to learn human preferences on hold, end pose, and release time

Key Innovations:

•

Provide deep learning algorithms to recognize human handover ● preferences from input 3D representations of objects as input

Lead 3D capture of 30 subjects performing handover interactions with 480 objects using calibrated multi-viewpoint multi-sensor environment

Enhance learning-based grasp algorithms to be human-aware

Solution: Use multi-modal data on multi-person handover of objects to learn human preferences on hold, end pose, and release time

Broader Impacts

- ullet
- manipulators: 2 Kinova Gen3s and 1 LoCoBot.
- research credits, work-study, and summer research programs.
- Students' Day, Family Weekend, and Horizons Program.

Enables co-robots to provide safe assistance in assisted living, warehousing, retail, assembly, and repair. We plan to evaluate human-aware grasp algorithms through studies with 64 subjects using three

• We will publicly release our multimodal dataset on multi-person handover interactions with 480 objects.

• The project will involve undergraduate researchers at Clarkson through directed study & undergraduate

• We will demo the human-aware robots to perform outreach during Clarkson's Open House, Accepted